Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2401139, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39036823

RESUMO

Core-shell gallium nitride (GaN)-based nanowires offer noteworthy opportunities for innovation in high-frequency opto- and microelectronics. This work delves deeply into the physical properties of crystalline GaN nanowires with aluminum and hafnium oxide shells. Particular attention is paid to partial coverage of nanowires, resulting with exceptional properties. First, the crystal lattice relaxation is observed by X-ray diffraction, photoluminescence, and Raman spectroscopy measurements. A high potential of partial coverage for optoelectronic applications is revealed with photo- and cathodoluminescence spectra along with an exploration of their temperature dependency. Next, the study focuses on understanding the mechanisms behind the observed enhancement of the luminescence efficiency. It is confirmed that nanowires are effectively protected against photoadsorption using partial coatings. This research advances the frontiers of nanotechnology, investigating the benefits of partial coverage, and shedding light on its complex interaction with cores.

2.
Nanotechnology ; 31(18): 184001, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31940593

RESUMO

Examples are presented that application of amorphous Al x O y nucleation layer is an efficient way of controlling spatial distribution of GaN nanowires grown by plasma-assisted molecular beam epitaxy. On GaN/sapphire substrates Al x O y stripes induce formation of GaN nanowires while a compact GaN layer is formed outside the stripes. We show that the ratio of nanowire length h to the thickness of the compact layer d can be tailored by adjusting impinging gallium and nitrogen fluxes. Calculations of the h/d aspect ratio were performed taking into account dependence of nanowire incubation time on the growth parameters. In agreement with calculations we found that the value of h/d ratio can be increased by increasing the N/Ga flux ratio in the way that the N-limited growth regime determines nanowire axial growth rate while growth of compact layer remains Ga-limited. This ensures the highest value of the h/d aspect ratio. Local modification of GaN growth kinetics caused by surface diffusion of Ga adatoms through the boundary separating the Al x O y stripe and the GaN/sapphire substrate is discussed. We show that during the nanowire incubation period gallium is transported out of the Al x O y stripe, which delays nanowire nucleation onset and leads to reduced length of GaN nanowires in the vicinity of the stripe edge. Simultaneously the growth on the GaN/sapphire substrate is locally enhanced, so the planar GaN layers adopts a typical edge shape of mesa structures grown by selective area growth. Ga diffusion length on a-Al x O y surface of ∼500 nm is inferred from our results.

3.
Microsc Microanal ; 21(3): 564-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25850809

RESUMO

We present results of cathodoluminescence (CL) investigations of high-quality zinc oxide (ZnO) nanorods obtained by an extremely fast hydrothermal method on a silicon substrate. A scanning electron microscopy (SEM) system equipped with CL allows direct comparison of SEM images and CL maps, taken from exactly the same areas of samples. Investigations are performed at a temperature of 5 K. An interlink between sample microstructure and emission properties is investigated. CL confirms a very high quality of ZnO nanorods produced by our method. In addition, the presence of super radiation effects in ZnO nanorod arrays is suggested.

4.
Materials (Basel) ; 17(16)2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39203157

RESUMO

ß-Ga2O3 is an ultra-wide bandgap semiconductor (Eg~4.8 eV) of interest for many applications, including optoelectronics. Undoped Ga2O3 emits light in the UV range that can be tuned to the visible region of the spectrum by rare earth dopants. In this work, we investigate the crystal lattice recovery of (2¯01)-oriented ß-Ga2O3 crystals implanted with Yb ions to the fluence of 1 ×1014 at/cm2. Post-implantation annealing at a range of temperature and different atmospheres was used to investigate the ß-Ga2O3 crystal structure recovery and optical activation of Yb ions. Ion implantation is a renowned technique used for material doping, but in spite of its many advantages such as the controlled introduction of dopants in concentrations exceeding the solubility limits, it also causes damage to the crystal lattice, which strongly influences the optical response from the material. In this work, post-implantation defects in ß-Ga2O3:Yb crystals, their transformation, and the recovery of the crystal lattice after thermal treatment have been investigated by channeling Rutherford backscattering spectrometry (RBS/c) supported by McChasy simulations, and the optical response was tested. It has been shown that post-implantation annealing at temperatures of 700-900 °C results in partial crystal lattice recovery, but it is accompanied by the out-diffusion of Yb ions toward the surface if the annealing temperature and time exceed 800 °C and 10 min, respectively. High-temperature implantation at 500-900 °C strongly limits post-implantation damage to the crystal lattice, but it does not cause the intense luminescence of Yb ions. This suggests that the recovery of the crystal lattice is not a sufficient condition for strong rare-earth photoluminescence at room temperature and that oxygen annealing is beneficial for intense infrared luminescence compared to other tested environments.

5.
Materials (Basel) ; 16(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37297215

RESUMO

Atomic layer deposition of HfO2 from TDMAH and water or ammonia water at different temperatures below 400 °C is studied. Growth per cycle (GPC) has been recorded in the range of 1.2-1.6 Å. At low temperatures (≤100 °C), the films grew faster and are structurally more disordered, amorphous and/or polycrystalline with crystal sizes up to 29 nm, compared to the films grown at higher temperatures. At high temperatures of 240 °C, the films are better crystallized with crystal sizes of 38-40 nm but grew slower. GPC, dielectric constant, and crystalline structure are improved by depositing at temperatures above 300 °C. The dielectric constant value and the roughness of the films have been determined for monoclinic HfO2, a mixture of orthorhombic and monoclinic, as well as for amorphous HfO2. Moreover, the present study shows that the increase in the dielectric constant of the films can be achieved by using ammonia water as an oxygen precursor in the ALD growth. The detailed investigations of the relationship between HfO2 properties and growth parameters presented here have not been reported so far, and the possibilities of fine-tuning and controlling the structure and performance of these layers are still being sought.

6.
Materials (Basel) ; 16(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36902872

RESUMO

Rare earth-doped zinc oxide (ZnO:RE) systems are attractive for future optoelectronic devices such as phosphors, displays, and LEDs with emission in the visible spectral range, working even in a radiation-intense environment. The technology of these systems is currently under development, opening up new fields of application due to the low-cost production. Ion implantation is a very promising technique to incorporate rare-earth dopants into ZnO. However, the ballistic nature of this process makes the use of annealing essential. The selection of implantation parameters, as well as post-implantation annealing, turns out to be non-trivial because they determine the luminous efficiency of the ZnO:RE system. This paper presents a comprehensive study of the optimal implantation and annealing conditions, ensuring the most efficient luminescence of RE3+ ions in the ZnO matrix. Deep and shallow implantations, implantations performed at high and room temperature with various fluencies, as well as a range of post-RT implantation annealing processes are tested: rapid thermal annealing (minute duration) under different temperatures, times, and atmospheres (O2, N2, and Ar), flash lamp annealing (millisecond duration) and pulse plasma annealing (microsecond duration). It is shown that the highest luminescence efficiency of RE3+ is obtained for the shallow implantation at RT with the optimal fluence of 1.0 × 1015 RE ions/cm2 followed by a 10 min annealing in oxygen at 800 °C, and the light emission from such a ZnO:RE system is so bright that can be observed with the naked eye.

7.
Materials (Basel) ; 14(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34576619

RESUMO

The continuous development of ALD thin films demands ongoing improvements and changes toward fabricating materials with tailored properties that are suitable for different practical applications. Ozone has been recently established as a precursor, with distinct advantages over the alternative oxidizing precursors in the ALDs of advanced dielectric films. This study reports alumina (Al2O3) and hafnia (HfO2) formation using an O3 source and compares the obtained structural and electrical properties. The performed structural examinations of ozone-based materials proved homogenous high-k films with less vacancy levels compared to water-based films. The enhanced structural properties also result in the problematic incorporation of different dopants through the bulk layer. Furthermore, analysis of electrical characteristics of the MIS structures with ALD gate dielectrics demonstrated the improved quality and good insulating properties of ozone-based films. However, further optimization of the ALD technique with ozone is needed as a relatively low relative permittivity characterizes the ultra-thin films.

8.
Beilstein J Nanotechnol ; 5: 173-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24605282

RESUMO

Selected properties of photovoltaic (PV) structures based on n-type zinc oxide nanorods grown by a low temperature hydrothermal method on p-type silicon substrates (100) are investigated. PV structures were covered with thin films of Al doped ZnO grown by atomic layer deposition acting as transparent electrodes. The investigated PV structures differ in terms of the shapes and densities of their nanorods. The best response is observed for the structure containing closely-spaced nanorods, which show light conversion efficiency of 3.6%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA