Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 58(6): 3412-3431, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37518981

RESUMO

Perceptual judgements about our physical environment are informed by somatosensory information. In real-world exploration, this often involves dynamic hand movements to contact surfaces, termed active touch. The current study investigated cortical oscillatory changes during active exploration to inform the estimation of surface properties and hedonic preferences of two textured stimuli: smooth silk and rough hessian. A purpose-built touch sensor quantified active touch, and oscillatory brain activity was recorded from 129-channel electroencephalography. By fusing these data streams at a single trial level, oscillatory changes within the brain were examined while controlling for objective touch parameters (i.e., friction). Time-frequency analysis was used to quantify changes in cortical oscillatory activity in alpha (8-12 Hz) and beta (16-24 Hz) frequency bands. Results reproduce findings from our lab, whereby active exploration of rough textures increased alpha-band event-related desynchronisation in contralateral sensorimotor areas. Hedonic processing of less preferred textures resulted in an increase in temporoparietal beta-band and frontal alpha-band event-related desynchronisation relative to most preferred textures, suggesting that higher order brain regions are involved in the hedonic processing of texture. Overall, the current study provides novel insight into the neural mechanisms underlying texture perception during active touch and how this process is influenced by cognitive tasks.


Assuntos
Córtex Sensório-Motor , Percepção do Tato , Tato , Eletroencefalografia/métodos , Percepção Visual , Córtex Somatossensorial
2.
Neuroimage ; 204: 116213, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31542511

RESUMO

Values are attributed to goods during free viewing of objects which entails multi- and trans-saccadic cognitive processes. Using electroencephalographic eye-fixation related potentials, the present study investigated how neural signals related to value-guided choice evolved over time when viewing household and office products during an auction task. Participants completed a Becker-DeGroot-Marschak auction task whereby half of the stimuli were presented in either a free or forced bid protocol to obtain willingness-to-pay. Stimuli were assigned to three value categories of low, medium and high value based on subjective willingness-to-pay. Eye fixations were organised into five 800 ms time-bins spanning the objects total viewing time. Independent component analysis was applied to eye-fixation related potentials. One independent component (IC) was found to represent fixations for high value products with increased activation over the left parietal region of the scalp. An IC with a spatial maximum over a fronto-central region of the scalp coded the intermediate values. Finally, one IC displaying activity that extends over the right frontal scalp region responded to intermediate- and low-value items. Each of these components responded early on during viewing an object and remained active over the entire viewing period, both during free and forced bid trials. Results suggest that the subjective value of goods are encoded using sets of brain activation patterns which are tuned to respond uniquely to either low, medium, or high values. Data indicates that the right frontal region of the brain responds to low and the left frontal region to high values. Values of goods are determined at an early point in the decision making process and carried for the duration of the decision period via trans-saccadic processes.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Tomada de Decisões/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Fixação Ocular/fisiologia , Lateralidade Funcional/fisiologia , Adulto , Medições dos Movimentos Oculares , Feminino , Humanos , Masculino , Adulto Jovem
3.
J Nutr ; 150(6): 1619-1630, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32271923

RESUMO

BACKGROUND: The reward value of palatable foods is often cited as an important influence on eating behaviors, including intake of sugars. However, human neuroimaging studies have generated conflicting evidence on the basic neural representation of taste and reward responses to caloric sweeteners (sucrose and glucose), and most relevant studies have used small subject numbers. OBJECTIVE: We conducted a systematic review and a coordinate-based meta-analysis of studies reporting brain responses to oral sugar solutions. METHODS: A systematic search of MEDLINE, Scopus, and PsycINFO through October 2019 identified fMRI studies (in healthy human adults, including those with overweight or obesity) assessing differences in responses to purified sweet and nonsweet taste stimuli. Data were extracted with the primary objective of quantifying evidence for the activation of brain regions associated with caloric sweet taste sensation. We used activation likelihood estimation meta-analysis methods. We also performed multiple sensitivity analyses to assess the generality of effects. RESULTS: Of 455 unique articles, 15 met the criteria for inclusion. These contributed to 2 primary meta-analyses: 1) sucrose (13 experiments, 179 coordinates, n = 241) and 2) sucrose + glucose (16 experiments, 209 coordinates, n = 262). Consistent activation was apparent in primary taste areas: insula (69.2% of studies) and opercular cortex (76.9% of studies), precentral gyri (53.9% of studies), and globus pallidus and postcentral gyrus (30.8% of studies for each). Evidence of reward activity (caudate) was seen in the primary analyses (30.8% of studies) but not in sensitivity analysis. CONCLUSIONS: We confirm the importance of primary taste areas for gustatory processing in human adults. We also provide tentative evidence for reward-related caudate activity in relation to the sweet taste of caloric sugars. A number of factors affect the observation and interpretation of brain responses, including reward-related activity. Firm conclusions require confirmation with large data set studies.


Assuntos
Imageamento por Ressonância Magnética/métodos , Edulcorantes , Paladar , Humanos , Funções Verossimilhança , Sacarose
4.
Chem Senses ; 45(9): 845-854, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-33035323

RESUMO

Congruent visual cues augment sensitivity to brief olfactory presentations and habituation of odor perception is modulated by central-cognitive processing including context. However, it is not known whether habituation to odors could interact with cross-modal congruent stimuli. The present research investigated the effect of visual congruence on odor detection sensitivity during continuous odor exposures. We utilized a multimethod approach, including subjective behavioral responses and reaction times (RTs; study 1) and electroencephalography (EEG, study 2). Study 1: 25 participants received 2-min presentations of moderate-intensity floral odor delivered via olfactometer with congruent (flower) and incongruent (object) image presentations. Participants indicated odor perception after each image. Detection sensitivity and RTs were analyzed in epochs covering the period of habituation. Study 2: 25 new participants underwent EEG recordings during 145-s blocks of odor presentations with congruent or incongruent images. Participants passively observed images and intermittently rated the perceived intensity of odor. Event-related potential analysis was utilized to evaluate brain processing related to odor-visual pairs across the period of habituation. Odor detection sensitivity and RTs were improved by congruent visual cues. Results highlighted a diminishing influence of visual congruence on odor detection sensitivity as habituation occurred. Event-related potential analysis revealed an effect of congruency on electrophysiological processing in the N400 component. This was only evident in early periods of odor exposure when perception was strong. For the first time, this demonstrates the modulation of central processing of odor-visual pairs by habituation. Frontal negativity (N400) responses encode the aspects of cross-modal congruence for odor-vision cross-modal tasks.


Assuntos
Comportamento/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Habituação Psicofisiológica/fisiologia , Olfato/fisiologia , Percepção Visual/fisiologia , Adulto , Eletroencefalografia , Potenciais Evocados , Feminino , Humanos , Masculino , Odorantes , Percepção Olfatória/fisiologia , Tempo de Reação
5.
Exp Brain Res ; 238(9): 1839-1859, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32507992

RESUMO

We explored how reward and value of effort shapes performance in a sustained vigilance, reaction time (RT) task. It was posited that reward and value would hasten RTs and increase cognitive effort by boosting activation in the sensorimotor cortex and inhibition in the frontal cortex, similar to the horse-race model of motor actions. Participants performed a series of speeded responses while expecting differing monetary rewards (0 pence (p), 1 p, and 10 p) if they responded faster than their median RT. Amplitudes of cortical alpha, beta, and theta oscillations were analysed using the event-related desynchronization method. In experiment 1 (N = 29, with 12 females), reward was consistent within block, while in experiment 2 (N = 17, with 12 females), reward amount was displayed before each trial. Each experiment evaluated the baseline amplitude of cortical oscillations differently. The value of effort was evaluated using a cognitive effort discounting task (COGED). In both experiments, RTs decreased significantly with higher rewards. Reward level sharpened the increased amplitudes of beta oscillations during fast responses in experiment 1. In experiment 2, reward decreased the amplitudes of beta oscillations in the ipsilateral sensorimotor cortex. Individual effort values did not significantly correlate with oscillatory changes in either experiment. Results suggest that reward level and response speed interacted with the task- and baseline-dependent patterns of cortical inhibition in the frontal cortex and with activation in the sensorimotor cortex during the period of motor preparation in a sustained vigilance task. However, neither the shortening of RT with increasing reward nor the value of effort correlated with oscillatory changes. This implies that amplitudes of cortical oscillations may shape upcoming motor responses but do not translate higher-order motivational factors into motor performance.


Assuntos
Recompensa , Vigília , Animais , Cognição , Feminino , Cavalos , Motivação , Tempo de Reação
6.
J Neurophysiol ; 119(5): 1924-1933, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442556

RESUMO

The value of environmental cues and internal states is continuously evaluated by the human brain, and it is this subjective value that largely guides decision making. The present study aimed to investigate the initial value attribution process, specifically the spatiotemporal activation patterns associated with values and valuation context, using electroencephalographic event-related potentials (ERPs). Participants completed a stimulus rating task in which everyday household items marketed up to a price of £4 were evaluated with respect to their desirability or material properties. The subjective values of items were evaluated as willingness to pay (WTP) in a Becker-DeGroot-Marschak auction. On the basis of the individual's subjective WTP values, the stimuli were divided into high- and low-value items. Source dipole modeling was applied to estimate the cortical sources underlying ERP components modulated by subjective values (high vs. low WTP) and the evaluation condition (value-relevant vs. value-irrelevant judgments). Low-WTP items and value-relevant judgments both led to a more pronounced N2 visual evoked potential at right frontal scalp electrodes. Source activity in right anterior insula and left orbitofrontal cortex was larger for low vs. high WTP at ∼200 ms. At a similar latency, source activity in right anterior insula and right parahippocampal gyrus was larger for value-relevant vs. value-irrelevant judgments. A stronger response for low- than high-value items in anterior insula and orbitofrontal cortex appears to reflect aversion to low-valued item acquisition, which in an auction experiment would be perceived as a relative loss. This initial low-value bias occurs automatically irrespective of the valuation context. NEW & NOTEWORTHY We demonstrate the spatiotemporal characteristics of the brain valuation process using event-related potentials and willingness to pay as a measure of subjective value. The N2 component resolves values of objects with a bias toward low-value items. The value-related changes of the N2 component are part of an automatic valuation process.


Assuntos
Córtex Cerebral/fisiologia , Tomada de Decisões/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Julgamento/fisiologia , Adulto , Potenciais Evocados Visuais/fisiologia , Feminino , Humanos , Masculino , Córtex Pré-Frontal/fisiologia , Análise Espaço-Temporal , Adulto Jovem
7.
Appetite ; 125: 24-31, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29407747

RESUMO

Implicit attentional processes are biased toward food-related stimuli, with the extent of that bias reflecting relative motivation to eat. These interactions have typically been investigated by comparisons between fasted and sated individuals. In this study, temporal changes in implicit attention to food were assessed in relation to natural, spontaneous changes in appetite occurring before and after an anticipated midday meal. Non-fasted adults performed an emotional blink of attention (EBA) task at intervals, before and after consuming preferred, pre-selected sandwiches to satiety. Participants were required to detect targets within a rapid visual stream, presented after task-irrelevant food (preferred or non-preferred sandwiches, or desserts) or non-food distractor images. All categories of food distractor preferentially captured attention even when appetite levels were low, but became more distracting as appetite increased preprandially, reducing task accuracy maximally as hunger peaked before lunch. Postprandially, attentional capture was markedly reduced for images of the specific sandwich type consumed and, to a lesser extent, for images of other sandwich types that had not been eaten. Attentional capture by images of desserts was unaffected by satiation. These findings support an important role of selective visual attention in the guidance of motivated behaviour. Naturalistic, meal-related changes in appetite are accompanied by changes in implicit attention to visual food stimuli that are easily detected using the EBA paradigm. Preprandial enhancement of attention capture by food cues likely reflects increases in the incentive motivational value of all food stimuli, perhaps providing an implicit index of wanting. Postprandial EBA responses confirm that satiation on a particular food results in relative inattention to that food, supporting an important attentional component in the operation of sensory-specific satiety.


Assuntos
Apetite , Atenção , Intermitência na Atenção Visual , Saciação , Adolescente , Adulto , Ingestão de Alimentos/psicologia , Jejum/psicologia , Feminino , Preferências Alimentares/psicologia , Voluntários Saudáveis , Humanos , Fome , Almoço , Masculino , Motivação , Estimulação Luminosa/métodos , Fotografação , Período Pós-Prandial , Fatores de Tempo , Adulto Jovem
8.
Eur J Neurosci ; 43(9): 1181-9, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26790868

RESUMO

The insula cortex and hypothalamus are implicated in eating behaviour, and contain receptor sites for peptides and hormones controlling energy balance. The insula encompasses multi-functional subregions, which display differential anatomical and functional connectivities with the rest of the brain. This study aimed to analyse the effect of fasting and satiation on the functional connectivity profiles of left and right anterior, middle, and posterior insula, and left and right hypothalamus. It was hypothesized that the profiles would be altered alongside changes in homeostatic energy balance. Nineteen healthy participants underwent two 7-min resting state functional magnetic resonance imaging scans, one when fasted and one when satiated. Functional connectivity between the left posterior insula and cerebellum/superior frontal gyrus, and between left hypothalamus and inferior frontal gyrus was stronger during fasting. Functional connectivity between the right middle insula and default mode structures (left and right posterior parietal cortex, cingulate cortex), and between right hypothalamus and superior parietal cortex was stronger during satiation. Differences in blood glucose levels between the scans accounted for several of the altered functional connectivities. The insula and hypothalamus appear to form a homeostatic energy balance network related to cognitive control of eating; prompting eating and preventing overeating when energy is depleted, and ending feeding or transferring attention away from food upon satiation. This study provides evidence of a lateralized dissociation of neural responses to energy modulations.


Assuntos
Córtex Cerebral/fisiologia , Fome/fisiologia , Hipotálamo/fisiologia , Adulto , Mapeamento Encefálico , Jejum/psicologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
9.
Appetite ; 103: 302-308, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27059832

RESUMO

Tea has historically been associated with mood benefits. Nevertheless, few studies have empirically investigated mood changes after tea consumption. We explored immediate effects of a single cup of tea up to an hour post-consumption on self-reported valence, arousal, discrete emotions, and implicit measures of mood. In a parallel group design, 153 participants received a cup of tea or placebo tea, or a glass of water. Immediately (i.e. 5 min) after consumption, tea increased valence but reduced arousal, as compared to the placebo. There were no differences at later time points. Discrete emotions did not differ significantly between conditions, immediately or over time. Water consumption increased implicit positivity as compared to placebo. Finally, consumption of tea and water resulted in higher interest in activities overall and in specific activity types compared to placebo. The present study shows that effects of a single cup of tea may be limited to an immediate increase in pleasure and decrease in arousal, which can increase interest in activities. Differences between tea and water were not significant, while differences between water and placebo on implicit measures were unexpected. More servings over a longer time may be required to evoke tea's arousing effects and appropriate tea consumption settings may evoke more enduring valence effects.


Assuntos
Afeto , Prazer , Chá , Adolescente , Adulto , Nível de Alerta , Atenção , Cafeína/administração & dosagem , Ingestão de Líquidos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Placebos , Autorrelato , Fatores de Tempo
10.
J Neurophysiol ; 113(5): 1323-33, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25475348

RESUMO

Hunger and pain are basic drives that compete for a behavioral response when experienced together. To investigate the cortical processes underlying hunger-pain interactions, we manipulated participants' hunger and presented photographs of appetizing food or inedible objects in combination with painful laser stimuli. Fourteen healthy participants completed two EEG sessions: one after an overnight fast, the other following a large breakfast. Spatio-temporal patterns of cortical activation underlying the hunger-pain competition were explored with 128-channel EEG recordings and source dipole analysis of laser-evoked potentials (LEPs). We found that initial pain ratings were temporarily reduced when participants were hungry compared with fed. Source activity in parahippocampal gyrus was weaker when participants were hungry, and activations of operculo-insular cortex, anterior cingulate cortex, parahippocampal gyrus, and cerebellum were smaller in the context of appetitive food photographs than in that of inedible object photographs. Cortical processing of noxious stimuli in pain-related brain structures is reduced and pain temporarily attenuated when people are hungry or passively viewing food photographs, suggesting a possible interaction between the opposing motivational forces of the eating drive and pain.


Assuntos
Giro do Cíngulo/fisiologia , Fome/fisiologia , Nociceptividade , Giro Para-Hipocampal/fisiologia , Percepção Visual , Adulto , Apetite , Cerebelo/fisiologia , Feminino , Alimentos , Humanos , Potenciais Evocados por Laser , Masculino , Estimulação Luminosa
11.
IEEE Trans Pattern Anal Mach Intell ; 46(2): 805-822, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37851557

RESUMO

Automatically recognising apparent emotions from face and voice is hard, in part because of various sources of uncertainty, including in the input data and the labels used in a machine learning framework. This paper introduces an uncertainty-aware multimodal fusion approach that quantifies modality-wise aleatoric or data uncertainty towards emotion prediction. We propose a novel fusion framework, in which latent distributions over unimodal temporal context are learned by constraining their variance. These variance constraints, Calibration and Ordinal Ranking, are designed such that the variance estimated for a modality can represent how informative the temporal context of that modality is w.r.t. emotion recognition. When well-calibrated, modality-wise uncertainty scores indicate how much their corresponding predictions are likely to differ from the ground truth labels. Well-ranked uncertainty scores allow the ordinal ranking of different frames across different modalities. To jointly impose both these constraints, we propose a softmax distributional matching loss. Our evaluation on AVEC 2019 CES, CMU-MOSEI, and IEMOCAP datasets shows that the proposed multimodal fusion method not only improves the generalisation performance of emotion recognition models and their predictive uncertainty estimates, but also makes the models robust to novel noise patterns encountered at test time.

12.
Behav Brain Res ; 465: 114932, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38437921

RESUMO

Previous research investigated cross-modal influence of olfactory stimuli on perception and evaluation of faces. However, little is known about the neural dynamics underpinning this multisensory perception, and no research examined perception for images of oneself, and others, in presence of fragrances. This study investigated the neural mechanisms of olfactory-visual processing using electroencephalography (EEG) and subjective evaluations of self- and other-images. 22 female participants evaluated images of female actors and themselves while being exposed to the fragrance of a commercially available body wash or clean air delivered via olfactometer. Participants rated faces for attractiveness, femininity, confidence and glamorousness on visual analogue scales. EEG data was recorded and event-related potentials (ERPs) associated with onset of face stimuli were analysed to consider effects of fragrance presence on face processing, and interactions between fragrance and self-other image-type. Subjective ratings of confidence, attractiveness and femininity were increased for both image-types in pleasant fragrance relative to clean air condition. ERP components covering early-to-late stages of face processing were modulated by the presence of fragrance. Findings also revealed a cross-modal fragrance-face interaction, with pleasant fragrance particularly affecting ERPs to self-images in mid-latency ERP components. Results showed that the pleasant fragrance of the commercially available body wash impacted how participants perceived faces of self and others. Self- and other-image faces were subjectively rated as more attractive, confident and feminine in the presence of the pleasant fragrance compared to an un-fragranced control. The pleasant fragrance also modulated underlying electrophysiological activity. For the first time, an effect of pleasant fragrance on face perception was observed in the N1 component, suggesting impact within 100 ms. Pleasant fragrance also demonstrated greater impact on subsequent neural processing for self, relative to other-faces. The findings have implications for understanding multisensory integration during evaluations of oneself and others.


Assuntos
Feminilidade , Odorantes , Humanos , Feminino , Beleza , Potenciais Evocados/fisiologia , Eletroencefalografia
13.
Cogn Affect Behav Neurosci ; 13(1): 186-96, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23001992

RESUMO

The dual-representation model of posttraumatic stress disorder (PTSD; Brewin, Gregory, Lipton, & Burgess, Psychological Review, 117, 210-232 2010) argues that intrusions occur when people fail to construct context-based representations during adverse experiences. The present study tested a specific prediction flowing from this model. In particular, we investigated whether the efficiency of temporal-lobe-based spatial configuration learning would account for individual differences in intrusive experiences and physiological reactivity in the laboratory. Participants (N = 82) completed the contextual cuing paradigm, which assesses spatial configuration learning that is believed to depend on associative encoding in the parahippocampus. They were then shown a trauma film. Afterward, startle responses were quantified during presentation of trauma reminder pictures versus unrelated neutral and emotional pictures. PTSD symptoms were recorded in the week following participation. Better configuration learning performance was associated with fewer perceptual intrusions, r = -.33, p < .01, but was unrelated to physiological responses to trauma reminder images (ps > .46) and had no direct effect on intrusion-related distress and overall PTSD symptoms, rs > -.12, ps > .29. However, configuration learning performance tended to be associated with reduced physiological responses to unrelated negative images, r = -.20, p = .07. Thus, while spatial configuration learning appears to be unrelated to affective responding to trauma reminders, our overall findings support the idea that the context-based memory system helps to reduce intrusions.


Assuntos
Aprendizagem por Associação/fisiologia , Individualidade , Rememoração Mental/fisiologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Adolescente , Adulto , Sinais (Psicologia) , Emoções , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Reflexo de Sobressalto/fisiologia , Transtornos de Estresse Pós-Traumáticos/diagnóstico
14.
Compr Psychiatry ; 54(6): 658-64, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23374906

RESUMO

BACKGROUND: Dissociative disorders encompass a range of symptoms varying from severe absent-mindedness and memory problems to confusion about one's own identity. Recent studies suggest that these symptoms may be the by-products of a labile sleep-wake cycle. METHODS: In the current study, we explored this issue in patients suffering from insomnia (N=46). We investigated whether these patients have raised levels of dissociative symptoms and whether these are related to objective sleep parameters. Patients stayed for at least one night in a specialized sleep clinic, while sleep EEG data were obtained. In addition, they completed self-report measures on dissociative symptoms, psychological problems, and sleep characteristics. RESULTS: Dissociative symptom levels were elevated in patients suffering from insomnia, and were correlated with unusual sleep experiences and poor sleep quality. Longer REM sleep periods and less time spent awake during the night were predictive of dissociation. CONCLUSIONS: This is the first study to show that insomnia patients have raised dissociative symptom levels and that their dissociative symptoms are related to objective EEG parameters. These findings are important because they may inspire sleep-related treatment methods for dissociative disorders.


Assuntos
Transtornos Dissociativos/complicações , Distúrbios do Início e da Manutenção do Sono/fisiopatologia , Sono/fisiologia , Adolescente , Adulto , Idoso , Transtornos Dissociativos/diagnóstico , Transtornos Dissociativos/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polissonografia , Distúrbios do Início e da Manutenção do Sono/complicações
15.
Physiol Behav ; 271: 114350, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714323

RESUMO

BACKGROUND: Prior research suggests naturalistic single-trial appetitive conditioning may be a potent phenomenon in humans, capable of modulating both motivation and attention. In this study, we aimed to characterise the neural correlates of this phenomenon using functional Magnetic Resonance Imaging (fMRI) paradigms METHODS: Twenty-three healthy adults (12 males) underwent conditioning during which they ate a novel 3D object made from white chocolate (CS+) and handled a similar object made from plastic (CS-). Brain activity was recorded before and after conditioning during a passive viewing paradigm RESULTS: A naturalistic CS+ was rated as more highly craved, better-liked and elicited greater expectancies for chocolate than the CS- after conditioning. An exploration of the interaction between time (pre- and post-conditioning) and CS type (CS+, CS-) during the passive viewing task suggested enhanced activation from pre- to post-conditioning in the right superior frontal gyrus (R.SFG) in response to the CS-. CONCLUSION: Results reveal neural correlates of single-trial appetitive conditioning and highlight a possible role of response inhibition during learning about non-rewards, perhaps optimizing motivated behaviour. These findings contribute to our understanding of the neural mechanisms underpinning rapid reward and non-reward learning, and may inform development of behavioural interventions for reward-driven overeating.


Assuntos
Condicionamento Clássico , Aprendizagem , Adulto , Masculino , Humanos , Condicionamento Clássico/fisiologia , Aprendizagem/fisiologia , Emoções/fisiologia , Motivação , Córtex Pré-Frontal , Imageamento por Ressonância Magnética , Recompensa , Sinais (Psicologia)
16.
PLoS One ; 18(7): e0286969, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37428744

RESUMO

Forming and comparing subjective values (SVs) of choice options is a critical stage of decision-making. Previous studies have highlighted a complex network of brain regions involved in this process by utilising a diverse range of tasks and stimuli, varying in economic, hedonic and sensory qualities. However, the heterogeneity of tasks and sensory modalities may systematically confound the set of regions mediating the SVs of goods. To identify and delineate the core brain valuation system involved in processing SV, we utilised the Becker-DeGroot-Marschak (BDM) auction, an incentivised demand-revealing mechanism which quantifies SV through the economic metric of willingness-to-pay (WTP). A coordinate-based activation likelihood estimation meta-analysis analysed twenty-four fMRI studies employing a BDM task (731 participants; 190 foci). Using an additional contrast analysis, we also investigated whether this encoding of SV would be invariant to the concurrency of auction task and fMRI recordings. A fail-safe number analysis was conducted to explore potential publication bias. WTP positively correlated with fMRI-BOLD activations in the left ventromedial prefrontal cortex with a sub-cluster extending into anterior cingulate cortex, bilateral ventral striatum, right dorsolateral prefrontal cortex, right inferior frontal gyrus, and right anterior insula. Contrast analysis identified preferential engagement of the mentalizing-related structures in response to concurrent scanning. Together, our findings offer succinct empirical support for the core structures participating in the formation of SV, separate from the hedonic aspects of reward and evaluated in terms of WTP using BDM, and show the selective involvement of inhibition-related brain structures during active valuation.


Assuntos
Encéfalo , Córtex Pré-Frontal , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Córtex Pré-Frontal/fisiologia , Comportamento de Escolha/fisiologia , Giro do Cíngulo/fisiologia , Mapeamento Encefálico , Imageamento por Ressonância Magnética
17.
Front Neurosci ; 17: 1197113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332863

RESUMO

Introduction: Texture changes occur frequently during real-world haptic explorations, but the neural processes that encode perceptual texture change remain relatively unknown. The present study examines cortical oscillatory changes during transitions between different surface textures during active touch. Methods: Participants explored two differing textures whilst oscillatory brain activity and finger position data were recorded using 129-channel electroencephalography and a purpose-built touch sensor. These data streams were fused to calculate epochs relative to the time when the moving finger crossed the textural boundary on a 3D-printed sample. Changes in oscillatory band power in alpha (8-12 Hz), beta (16-24 Hz) and theta (4-7 Hz) frequency bands were investigated. Results: Alpha-band power reduced over bilateral sensorimotor areas during the transition period relative to ongoing texture processing, indicating that alpha-band activity is modulated by perceptual texture change during complex ongoing tactile exploration. Further, reduced beta-band power was observed in central sensorimotor areas when participants transitioned from rough to smooth relative to transitioning from smooth to rough textures, supporting previous research that beta-band activity is mediated by high-frequency vibrotactile cues. Discussion: The present findings suggest that perceptual texture change is encoded in the brain in alpha-band oscillatory activity whilst completing continuous naturalistic movements across textures.

18.
Brain Behav ; 13(11): e3264, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37749852

RESUMO

INTRODUCTION: Humans use discriminative touch to perceive texture through dynamic interactions with surfaces, activating low-threshold mechanoreceptors in the skin. It was largely assumed that texture was processed in primary somatosensory regions in the brain; however, imaging studies indicate heterogeneous patterns of brain activity associated with texture processing. METHODS: To address this, we conducted a coordinate-based activation likelihood estimation meta-analysis of 13 functional magnetic resonance imaging studies (comprising 15 experiments contributing 228 participants and 275 foci) selected by a systematic review. RESULTS: Concordant activations for texture perception occurred in the left primary somatosensory and motor regions, with bilateral activations in the secondary somatosensory, posterior insula, and premotor and supplementary motor cortices. We also evaluated differences between studies that compared touch processing to non-haptic control (e.g., rest or visual control) or those that used haptic control (e.g., shape or orientation perception) to specifically investigate texture encoding. Studies employing a haptic control revealed concordance for texture processing only in the left secondary somatosensory cortex. Contrast analyses demonstrated greater concordance of activations in the left primary somatosensory regions and inferior parietal cortex for studies with a non-haptic control, compared to experiments accounting for other haptic aspects. CONCLUSION: These findings suggest that texture processing may recruit higher order integrative structures, and the secondary somatosensory cortex may play a key role in encoding textural properties. The present study provides unique insight into the neural correlates of texture-related processing by assessing the influence of non-textural haptic elements and identifies opportunities for a future research design to understand the neural processing of texture.


Assuntos
Percepção do Tato , Humanos , Mapeamento Encefálico , Funções Verossimilhança , Imageamento por Ressonância Magnética/métodos , Percepção do Tato/fisiologia
19.
Behav Brain Res ; 429: 113908, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500720

RESUMO

Previous studies have shown attenuation of cortical oscillations over bilateral sensorimotor cortex areas during passive perception of smooth textures applied to the skin. However, humans typically explore surfaces using dynamic hand movements. As movements may both modulate texture-related cortical activity and induce movement-related cortical activation, data from passive texture perception cannot be extrapolated to active texture perception. In the present study, we used electroencephalography to investigate cortical oscillatory changes during texture perception throughout active touch exploration. Three natural textured stimuli were selected: smooth silk, soft brushed cotton, and rough hessian. Texture samples were mounted on a purpose-built touch sensor which measured the load and position of the index finger, whilst electroencephalography from 129 channels recorded oscillatory brain activity. The data were fused to investigate oscillatory changes relating to active touch. Changes in oscillatory band power, event-related desynchronisation/synchronisation (ERD/ERS), were investigated in alpha (8-12 Hz) and beta (16-24 Hz) frequency bands. Active texture exploration revealed bilateral activation patterns over sensorimotor cortical areas. Beta-band ERD increased over contralateral sensorimotor regions for soft and smooth textures, and over ipsilateral sensorimotor areas for the smoothest texture. Analysis of covariance revealed that individual differences in perception of softness and smoothness were related to variations in cortical oscillatory activity. Differences may be due to increased high frequency vibrations for smooth and soft textures compared to rough. For the first time, active touch was quantified and fused with electroencephalography data streams, contributing to the understanding of the neural correlates of texture perception during active touch.


Assuntos
Percepção do Tato , Tato , Eletroencefalografia , Humanos , Movimento/fisiologia , Percepção do Tato/fisiologia , Percepção Visual
20.
Psychophysiology ; 59(5): e13897, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34251684

RESUMO

Losses usually have greater subjective value (SV) than gains of equal nominal value but often cause a relative deterioration in effortful performance. Since losses and gains induce differing approach/avoidance behavioral tendencies, we explored whether incentive type interacted with approach/avoidance motor-sets. Alpha- and beta-band event-related desynchronization (ERD) was hypothesized to be weakest when participants expected a loss and prepared an inhibitory motor-set, and strongest when participants expected a gain and prepared an active motor-set. It was also hypothesized that effort would modulate reward and motor-set-related cortical activation patterns. Participants completed a cued Go/NoGo task while expecting a reward (+10p), avoiding a loss (-10p), or receiving no incentive (0p); and while expecting a NoGo cue with a probability of either .75 or .25. Pre-movement alpha- and beta-band EEG power was analyzed using the ERD method, and the SV of effort was evaluated using a cognitive effort discounting task. Gains incentivized faster RTs and stronger preparatory alpha band ERD compared to loss and no incentive conditions, while inhibitory motor-sets resulted in significantly weaker alpha-band ERD. However, there was no interaction between incentive and motor-sets. Participants were more willing to expend effort in losses compared to gain trials, although the SV of effort was not associated with ERD patterns or RTs. Results suggest that incentive and approach/avoidance motor tendencies modulate cortical activations prior to a speeded RT movement independently, and are not associated with the economic value of effort. The present results favor attentional explanations of the effect of incentive modality on effort.


Assuntos
Córtex Motor , Sincronização Cortical/fisiologia , Sinais (Psicologia) , Eletroencefalografia/métodos , Humanos , Motivação , Córtex Motor/fisiologia , Movimento/fisiologia , Recompensa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA