Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Growth Factors ; 37(1-2): 68-75, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31185750

RESUMO

Biliary atresia (BA) is characterized by progressive destruction of the biliary system leading to liver fibrosis and deterioration of liver function. Serum hepatocyte growth factor (HGF) has been shown to be increased in cirrhotic diseases including BA. The aim of this study was to investigate the prognostic value of HGF levels in sera and liver tissue for the further disease course. A total of 49 serum and liver samples from infants with BA were acquired during Kasai-portoenterostomy (KPE) and analyzed by multiplex immunoassay including HGF, as marker of liver regeneration, and Interleukin 6 (IL-6) as a marker of inflammation. Both mediators showed no correlation with the outcome defined as favorable (survival with native liver (SNL)) or, in contrast, rapid deterioration of liver function requiring transplantation. Our data suggest that the degree of liver regeneration indicated by high levels of HGF within the liver is a dismissible factor in the post-KPE disease course.


Assuntos
Atresia Biliar/sangue , Fator de Crescimento de Hepatócito/sangue , Fígado/metabolismo , Portoenterostomia Hepática/efeitos adversos , Complicações Pós-Operatórias/sangue , Atresia Biliar/metabolismo , Atresia Biliar/cirurgia , Biomarcadores/sangue , Biomarcadores/metabolismo , Feminino , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Lactente , Recém-Nascido , Interleucina-6/sangue , Interleucina-6/metabolismo , Masculino , Complicações Pós-Operatórias/metabolismo
2.
J Mol Cell Cardiol ; 122: 114-124, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30118791

RESUMO

Maladaptive cardiac remodeling after myocardial infarction (MI) is increasingly contributing to the prevalence of chronic heart failure. Women show less severe remodeling, a reduced mortality and a better systolic function after MI compared to men. Although sex hormones are being made responsible for these differences, it remains currently unknown how this could be translated into therapeutic strategies. Because we had recently demonstrated that inhibition of the conversion of testosterone to its highly active metabolite dihydrotestosterone (DHT) by finasteride effectively reduces cardiac hypertrophy and improves heart function during pressure overload, we asked here whether this strategy could be applied to post-MI remodeling. We found increased abundance of DHT and increased expression of androgen responsive genes in the mouse myocardium after experimental MI. Treatment of mice with finasteride for 21 days (starting 7 days after surgery), reduced myocardial DHT levels and markedly attenuated cardiac dysfunction as well as hypertrophic remodeling after MI. Histological and molecular analyses showed reduced MI triggered interstitial fibrosis, reduced cardiomyocyte hypertrophy and increased capillary density in the myocardium of finasteride treated mice. Mechanistically, this was associated with decreased activation of myocardial growth-signaling pathways, a comprehensive normalization of pathological myocardial gene-expression as revealed by RNA deep-sequencing and with direct effects of finasteride on cardiac fibroblasts and endothelial cells. In conclusion, we demonstrated a beneficial role of anti-androgenic treatment with finasteride in post-MI remodeling of mice. As finasteride is already approved for the treatment of benign prostate disease, it could potentially be evaluated as therapeutic strategy for heart failure after MI.


Assuntos
Antagonistas de Androgênios/uso terapêutico , Finasterida/uso terapêutico , Expressão Gênica/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Análise de Variância , Animais , Cardiomegalia/tratamento farmacológico , Linhagem Celular , Di-Hidrotestosterona/metabolismo , Células Endoteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibrose , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Camundongos , Contração Muscular/efeitos dos fármacos , Miocárdio/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
3.
Cytokine ; 111: 382-388, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30300856

RESUMO

PURPOSE: Biliary atresia (BA) is a rare disease of unknown pathogenesis in infants characterized by an inflammatory, progressive destruction of the biliary system and deterioration of liver function. The standard treatment for BA is a Kasai-hepatoportoenterostomy (KPE). However, liver transplantation (LTX) becomes necessary in about 50-80% of cases. Therefore, some authors advocate for primary LTX in BA, but this would require early markers to predict which children would benefit from KPE or to show rapid progression to liver cirrhosis (RLC) instead. METHODS: Snap-frozen liver biopsies and sera samples of 57 infants with BA were collected during KPE. Clinical and follow-up data were assessed via the biliary atresia and related diseases registry (BARD-online.com). Protein-levels of 25 pro- and anti-inflammatory mediators of 49 infants were assessed via multiplex protein-immunoassay and analyzed by t-test as well as multidimensional principal component analysis. RESULTS: 22 different immunomodulatory mediators were detectable in livers of children with BA, while serum protein levels were very low to undetectable. Following KPE, 33 BA patients showed RLC that required early LTX, while 24 had favorable course of disease with long-term survival with native liver (SNL). There were no significant differences between RLC and SNL in terms of local (from liver samples) nor systemic (from sera) immunomodulatory mediators. Protein levels were much lower in sera than in livers without statistical correlation. CONCLUSION: Our data suggest that local or systemic immunomodulatory mediators are unsuitable for predicting the disease course of BA. Thus, no deduction for optimal treatment strategy can be drawn. Collectively, we conclude that in BA, the degree of inflammation and protein microenvironment in the liver at the time-point of KPE are dismissible factors for the future course of disease.


Assuntos
Atresia Biliar/sangue , Atresia Biliar/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Atresia Biliar/patologia , Biomarcadores/sangue , Biomarcadores/metabolismo , Biópsia , Progressão da Doença , Feminino , Humanos , Fatores Imunológicos/sangue , Fatores Imunológicos/metabolismo , Lactente , Inflamação/sangue , Inflamação/metabolismo , Inflamação/patologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/sangue , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Transplante de Fígado/métodos , Masculino , Pessoa de Meia-Idade , Portoenterostomia Hepática/métodos , Resultado do Tratamento
4.
Blood ; 123(8): 1239-49, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24352879

RESUMO

We identified diminished levels of the natural inhibitor of neutrophil elastase (NE), secretory leukocyte protease inhibitor (SLPI), in myeloid cells and plasma of patients with severe congenital neutropenia (CN). We further found that downregulation of SLPI in CD34(+) bone marrow (BM) hematopoietic progenitors from healthy individuals resulted in markedly reduced in vitro myeloid differentiation accompanied by cell-cycle arrest and elevated apoptosis. Reciprocal regulation of SLPI by NE is well documented, and we previously demonstrated diminished NE levels in CN patients. Here, we found that transduction of myeloid cells with wild-type NE or treatment with exogenous NE increased SLPI messenger RNA and protein levels, whereas transduction of mutant forms of NE or inhibition of NE resulted in downregulation of SLPI. An analysis of the mechanisms underlying the diminished myeloid differentiation caused by reduced SLPI levels revealed that downregulation of SLPI with short hairpin RNA (shRNA) upregulated nuclear factor κB levels and reduced phospho-extracellular signal-regulated kinase (ERK1/2)-mediated phosphorylation and activation of the transcription factor lymphoid enhancer-binding factor-1 (LEF-1). Notably, microarray analyses revealed severe defects in signaling cascades regulating the cell cycle, including c-Myc-downstream signaling, in myeloid cells transduced with SLPI shRNA. Taken together, these results indicate that SLPI controls the proliferation, differentiation, and cell cycle of myeloid cells.


Assuntos
Granulócitos/citologia , Granulócitos/metabolismo , Granulócitos/patologia , Neutropenia/congênito , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Células da Medula Óssea/citologia , Diferenciação Celular/imunologia , Síndrome Congênita de Insuficiência da Medula Óssea , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Elastase de Leucócito/antagonistas & inibidores , Elastase de Leucócito/genética , Elastase de Leucócito/metabolismo , Sistema de Sinalização das MAP Quinases/imunologia , Células Mieloides/citologia , Células Mieloides/metabolismo , NF-kappa B/metabolismo , Neutropenia/metabolismo , Neutropenia/patologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/metabolismo , Inibidor Secretado de Peptidases Leucocitárias/genética , Inibidor Secretado de Peptidases Leucocitárias/imunologia , Células-Tronco
6.
iScience ; 25(3): 103965, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35281736

RESUMO

To identify cellular mechanisms responsible for pressure overload triggered heart failure, we isolated cardiomyocytes, endothelial cells, and fibroblasts as most abundant cell types from mouse hearts in the subacute and chronic stages after transverse aortic constriction (TAC) and performed RNA-sequencing. We detected highly cell-type specific transcriptional responses with characteristic time courses and active intercellular communication. Cardiomyocytes after TAC exerted an early and sustained upregulation of inflammatory and matrix genes and a concomitant suppression of metabolic and ion channel genes. Fibroblasts, in contrast, showed transient early upregulation of inflammatory and matrix genes and downregulation of angiogenesis genes, but sustained induction of cell cycle and ion channel genes during TAC. Endothelial cells transiently induced cell cycle and extracellular matrix genes early after TAC, but exerted a long-lasting upregulation of inflammatory genes. As we found that matrix production by multiple cell types triggers pathological cellular responses, it might serve as a future therapeutic target.

7.
JCI Insight ; 52019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31335322

RESUMO

Cardiac pressure overload (for example due to aortic stenosis) induces irreversible myocardial dysfunction, cardiomyocyte hypertrophy and interstitial fibrosis in patients. In contrast to adult, neonatal mice can efficiently regenerate the heart after injury in the first week after birth. To decipher whether insufficient cardiac regeneration contributes to the progression of pressure overload dependent disease, we established a transverse aortic constriction protocol in neonatal mice (nTAC). nTAC in the non-regenerative stage (at postnatal day P7) induced cardiac dysfunction, myocardial fibrosis and cardiomyocyte hypertrophy. In contrast, nTAC in the regenerative stage (at P1) largely prevented these maladaptive responses and was in particular associated with enhanced myocardial angiogenesis and increased cardiomyocyte proliferation, which both supported adaptation during nTAC. A comparative transcriptomic analysis between hearts after regenerative versus non-regenerative nTAC suggested the transcription factor GATA4 as master regulator of the regenerative gene-program. Indeed, cardiomyocyte specific deletion of GATA4 converted the regenerative nTAC into a non-regenerative, maladaptive response. Our new nTAC model can be used to identify mediators of adaptation during pressure overload and to discover novel potential therapeutic strategies.


Assuntos
Indutores da Angiogênese/farmacologia , Proliferação de Células/efeitos dos fármacos , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Citocinese , Modelos Animais de Doenças , Feminino , Fibrose , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Expressão Gênica , Coração , Insuficiência Cardíaca/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Miócitos Cardíacos/patologia , Pressão , Ratos , Sirolimo/farmacologia , Transcriptoma
8.
Cardiovasc Res ; 115(1): 71-82, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29931050

RESUMO

Aims: Chronic heart failure is becoming increasingly prevalent and is still associated with a high mortality rate. Myocardial hypertrophy and fibrosis drive cardiac remodelling and heart failure, but they are not sufficiently inhibited by current treatment strategies. Furthermore, despite increasing knowledge on cardiomyocyte intracellular signalling proteins inducing pathological hypertrophy, therapeutic approaches to target these molecules are currently unavailable. In this study, we aimed to establish and test a therapeutic tool to counteract the 22 kDa calcium and integrin binding protein (CIB) 1, which we have previously identified as nodal regulator of pathological cardiac hypertrophy and as activator of the maladaptive calcineurin/NFAT axis. Methods and results: Among three different sequences, we selected a shRNA construct (shCIB1) to specifically down-regulate CIB1 by 50% upon adenoviral overexpression in neonatal rat cardiomyocytes (NRCM), and upon overexpression by an adeno-associated-virus (AAV) 9 vector in mouse hearts. Overexpression of shCIB1 in NRCM markedly reduced cellular growth, improved contractility of bioartificial cardiac tissue and reduced calcineurin/NFAT activation in response to hypertrophic stimulation. In mice, administration of AAV-shCIB1 strongly ameliorated eccentric cardiac hypertrophy and cardiac dysfunction during 2 weeks of pressure overload by transverse aortic constriction (TAC). Ultrastructural and molecular analyses revealed markedly reduced myocardial fibrosis, inhibition of hypertrophy associated gene expression and calcineurin/NFAT as well as ERK MAP kinase activation after TAC in AAV-shCIB1 vs. AAV-shControl treated mice. During long-term exposure to pressure overload for 10 weeks, AAV-shCIB1 treatment maintained its anti-hypertrophic and anti-fibrotic effects, but cardiac function was no longer improved vs. AAV-shControl treatment, most likely resulting from a reduction in myocardial angiogenesis upon downregulation of CIB1. Conclusions: Inhibition of CIB1 by a shRNA-mediated gene therapy potently inhibits pathological cardiac hypertrophy and fibrosis during pressure overload. While cardiac function is initially improved by shCIB1, this cannot be kept up during persisting overload.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Insuficiência Cardíaca/terapia , Hipertrofia Ventricular Esquerda/terapia , Miócitos Cardíacos/metabolismo , RNA Interferente Pequeno/metabolismo , Terapêutica com RNAi , Disfunção Ventricular Esquerda/terapia , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Calcineurina/metabolismo , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/patologia , Fatores de Transcrição NFATC/metabolismo , Neovascularização Fisiológica , RNA Interferente Pequeno/genética , Ratos Sprague-Dawley , Transdução de Sinais , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia
9.
EMBO Mol Med ; 11(10): e10018, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31468715

RESUMO

Pathological cardiac overload induces myocardial protein synthesis and hypertrophy, which predisposes to heart failure. To inhibit hypertrophy therapeutically, the identification of negative regulators of cardiomyocyte protein synthesis is needed. Here, we identified the tumor suppressor protein TIP30 as novel inhibitor of cardiac hypertrophy and dysfunction. Reduced TIP30 levels in mice entailed exaggerated cardiac growth during experimental pressure overload, which was associated with cardiomyocyte cellular hypertrophy, increased myocardial protein synthesis, reduced capillary density, and left ventricular dysfunction. Pharmacological inhibition of protein synthesis improved these defects. Our results are relevant for human disease, since we found diminished cardiac TIP30 levels in samples from patients suffering from end-stage heart failure or hypertrophic cardiomyopathy. Importantly, therapeutic overexpression of TIP30 in mouse hearts inhibited cardiac hypertrophy and improved left ventricular function during pressure overload and in cardiomyopathic mdx mice. Mechanistically, we identified a previously unknown anti-hypertrophic mechanism, whereby TIP30 binds the eukaryotic elongation factor 1A (eEF1A) to prevent the interaction with its essential co-factor eEF1B2 and translational elongation. Therefore, TIP30 could be a therapeutic target to counteract cardiac hypertrophy.


Assuntos
Acetiltransferases/metabolismo , Cardiomegalia/fisiopatologia , Elongação Traducional da Cadeia Peptídica , Fatores de Transcrição/metabolismo , Animais , Modelos Animais de Doenças , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos mdx , Miócitos Cardíacos/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo
10.
EMBO Mol Med ; 9(2): 265-279, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28053183

RESUMO

Heart failure is often the consequence of insufficient cardiac regeneration. Neonatal mice retain a certain capability of myocardial regeneration until postnatal day (P)7, although the underlying transcriptional mechanisms remain largely unknown. We demonstrate here that cardiac abundance of the transcription factor GATA4 was high at P1, but became strongly reduced at P7 in parallel with loss of regenerative capacity. Reconstitution of cardiac GATA4 levels by adenoviral gene transfer markedly improved cardiac regeneration after cryoinjury at P7. In contrast, the myocardial scar was larger in cardiomyocyte-specific Gata4 knockout (CM-G4-KO) mice after cryoinjury at P0, indicative of impaired regeneration, which was accompanied by reduced cardiomyocyte proliferation and reduced myocardial angiogenesis in CM-G4-KO mice. Cardiomyocyte proliferation was also diminished in cardiac explants from CM-G4-KO mice and in isolated cardiomyocytes with reduced GATA4 expression. Mechanistically, decreased GATA4 levels caused the downregulation of several pro-regenerative genes (among them interleukin-13, Il13) in the myocardium. Interestingly, systemic administration of IL-13 rescued defective heart regeneration in CM-G4-KO mice and could be evaluated as therapeutic strategy in the future.


Assuntos
Fator de Transcrição GATA4/metabolismo , Traumatismos Cardíacos , Coração/fisiologia , Regeneração , Transcrição Gênica , Animais , Animais Recém-Nascidos , Deleção de Genes , Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA