Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Plant Cell Environ ; 45(5): 1362-1381, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35141930

RESUMO

Leaves balance CO2 and radiative absorption while maintaining water transport to maximise photosynthesis. Related species with contrasting leaf anatomy can provide insights into inherent and stress-induced links between structure and function for commonly measured leaf traits for important crops. We used two walnut species with contrasting mesophyll anatomy to evaluate these integrated exchange processes under non-stressed and drought conditions using a combination of light microscopy, X-ray microCT, gas exchange, hydraulic conductance, and chlorophyll distribution profiles through leaves. Juglans regia had thicker palisade mesophyll, higher fluorescence in the palisade, and greater low-mesophyll porosity that were associated with greater gas-phase diffusion (gIAS ), stomatal and mesophyll (gm ) conductances and carboxylation capacity. More and highly-packed mesophyll cells and bundle sheath extensions (BSEs) in Juglans microcarpa led to higher fluorescence in the spongy and in proximity to the BSEs. Both species exhibited drought-induced reductions in mesophyll cell volume, yet the associated increases in porosity and gIAS were obscured by declines in biochemical activity that decreased gm . Inherent differences in leaf anatomy between the species were linked to differences in gas exchange, light absorption and photosynthetic capacity, and drought-induced changes in leaf structure impacted performance via imposing species-specific limitations to light absorption, gas exchange and hydraulics.


Assuntos
Dióxido de Carbono , Dessecação , Células do Mesofilo , Fotossíntese , Folhas de Planta/anatomia & histologia
2.
Plant Cell Environ ; 45(8): 2351-2365, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35642731

RESUMO

Similar to other cropping systems, few walnut cultivars are used as scion in commercial production. Germplasm collections can be used to diversify cultivar options and hold potential for improving crop productivity, disease resistance and stress tolerance. In this study, we explored the anatomical and biochemical bases of photosynthetic capacity and response to water stress in 11 Juglans regia accessions in the U.S. department of agriculture, agricultural research service (USDA-ARS) National Clonal Germplasm. Net assimilation rate (An ) differed significantly among accessions and was greater in lower latitudes coincident with higher stomatal and mesophyll conductances, leaf thickness, mesophyll porosity, gas-phase diffusion, leaf nitrogen and lower leaf mass and stomatal density. High CO2 -saturated assimilation rates led to increases in An under diffusional and biochemical limitations. Greater An was found in lower-latitude accessions native to climates with more frost-free days, greater precipitation seasonality and lower temperature seasonality. As expected, water stress consistently impaired photosynthesis with the highest % reductions in lower-latitude accessions (A3, A5 and A9), which had the highest An under well-watered conditions. However, An for A3 and A5 remained among the highest under dehydration. J. regia accessions, which have leaf structural traits and biochemistry that enhance photosynthesis, could be used as commercial scions or breeding parents to enhance productivity.


Assuntos
Juglans , Dióxido de Carbono , Desidratação , Genótipo , Juglans/genética , Células do Mesofilo/fisiologia , Fotossíntese/fisiologia , Folhas de Planta
3.
Proc Biol Sci ; 288(1945): 20203145, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33622134

RESUMO

Maintaining high rates of photosynthesis in leaves requires efficient movement of CO2 from the atmosphere to the mesophyll cells inside the leaf where CO2 is converted into sugar. CO2 diffusion inside the leaf depends directly on the structure of the mesophyll cells and their surrounding airspace, which have been difficult to characterize because of their inherently three-dimensional organization. Yet faster CO2 diffusion inside the leaf was probably critical in elevating rates of photosynthesis that occurred among angiosperm lineages. Here we characterize the three-dimensional surface area of the leaf mesophyll across vascular plants. We show that genome size determines the sizes and packing densities of cells in all leaf tissues and that smaller cells enable more mesophyll surface area to be packed into the leaf volume, facilitating higher CO2 diffusion. Measurements and modelling revealed that the spongy mesophyll layer better facilitates gaseous phase diffusion while the palisade mesophyll layer better facilitates liquid-phase diffusion. Our results demonstrate that genome downsizing among the angiosperms was critical to restructuring the entire pathway of CO2 diffusion into and through the leaf, maintaining high rates of CO2 supply to the leaf mesophyll despite declining atmospheric CO2 levels during the Cretaceous.


Assuntos
Dióxido de Carbono , Células do Mesofilo , Tamanho Celular , Tamanho do Genoma , Fotossíntese , Folhas de Planta
4.
Plant Cell Environ ; 43(4): 920-933, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31953871

RESUMO

High CO2 concentrations stimulate net photosynthesis by increasing CO2 substrate availability for Rubisco, simultaneously suppressing photorespiration. Previously, we reported that silencing the chloroplast vesiculation (cv) gene in rice increased source fitness, through the maintenance of chloroplast stability and the expression of photorespiration-associated genes. Because high atmospheric CO2 conditions diminished photorespiration, we tested whether CV silencing might be a viable strategy to improve the effects of high CO2 on grain yield and N assimilation in rice. Under elevated CO2 , OsCV expression was induced, and OsCV was targeted to peroxisomes where it facilitated the removal of OsPEX11-1 from the peroxisome and delivered it to the vacuole for degradation. This process correlated well with the reduction in the number of peroxisomes, the decreased catalase activity and the increased H2 O2 content in wild-type plants under elevated CO2 . At elevated CO2 , CV-silenced rice plants maintained peroxisome proliferation and photorespiration and displayed higher N assimilation than wild-type plants. This was supported by higher activity of enzymes involved in NO3- and NH4+ assimilation and higher total and seed protein contents. Co-immunoprecipitation of OsCV-interacting proteins suggested that, similar to its role in chloroplast protein turnover, OsCV acted as a scaffold, binding peroxisomal proteins.


Assuntos
Cloroplastos/metabolismo , Oryza/metabolismo , Fotossíntese , Dióxido de Carbono , Cloroplastos/genética , Cloroplastos/fisiologia , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Inativação Gênica , Genes de Plantas/genética , Genes de Plantas/fisiologia , Peróxido de Hidrogênio/metabolismo , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão , Nitrogênio/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Fotossíntese/fisiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase
5.
Plant Physiol ; 178(1): 148-162, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30042212

RESUMO

The leaf intercellular airspace (IAS) is generally considered to have high conductance to CO2 diffusion relative to the liquid phase. While previous studies accounted for leaf-level variation in porosity and mesophyll thickness, they omitted 3D IAS traits that potentially influence IAS conductance (gIAS). Here, we reevaluated the standard equation for gIAS by incorporating tortuosity, lateral path lengthening, and IAS connectivity. We measured and spatially mapped these geometric IAS traits for 19 Bromeliaceae species with Crassulacean acid metabolism (CAM) or C3 photosynthetic pathways using x-ray microcomputed tomography imaging and a novel computational approach. We found substantial variation in porosity (0.04-0.73 m3 m-3), tortuosity (1.09-3.33 m2 m-2), lateral path lengthening (1.12-3.19 m m-1), and IAS connectivity (0.81-0.97 m2 m-2) across all bromeliad leaves. The revised gIAS model predicted significantly lower gIAS in CAM (0.01-0.19 mol m-2 s-1 bar-1) than in C3 (0.41-2.38 mol m-2 s-1 bar-1) plants due to a coordinated decline in these IAS traits. Our reevaluated equation also generally predicted lower gIAS values than the former one. Moreover, we observed high spatial heterogeneity in these IAS geometric traits throughout the mesophyll, especially within CAM leaves. Our data show that IAS traits that better capture the 3D complexity of leaves strongly influence gIAS and that the impact of the IAS on mesophyll conductance should be carefully considered with respect to leaf anatomy. We provide a simple function to estimate tortuosity and lateral path lengthening in the absence of access to imaging tools such as x-ray microcomputed tomography or other novel 3D image-processing techniques.


Assuntos
Bromeliaceae/metabolismo , Dióxido de Carbono/metabolismo , Células do Mesofilo/metabolismo , Folhas de Planta/metabolismo , Algoritmos , Bromeliaceae/classificação , Bromeliaceae/genética , Difusão , Fotossíntese , Filogenia , Folhas de Planta/anatomia & histologia , Folhas de Planta/citologia , Porosidade , Especificidade da Espécie , Microtomografia por Raio-X
6.
Ann Bot ; 124(6): 917-932, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30596881

RESUMO

BACKGROUND: Wild crop relatives have been potentially subjected to stresses on an evolutionary time scale prior to domestication. Among these stresses, drought is one of the main factors limiting crop productivity and its impact is likely to increase under current scenarios of global climate change. We sought to determine to what extent wild common bean (Phaseolus vulgaris) exhibited adaptation to drought stress, whether this potential adaptation is dependent on the climatic conditions of the location of origin of individual populations, and to what extent domesticated common bean reflects potential drought adaptation. METHODS: An extensive and diverse set of wild beans from across Mesoamerica, along with a set of reference Mesoamerican domesticated cultivars, were evaluated for root and shoot traits related to drought adaptation. A water deficit experiment was conducted by growing each genotype in a long transparent tube in greenhouse conditions so that root growth, in addition to shoot growth, could be monitored. RESULTS: Phenotypic and landscape genomic analyses, based on single-nucleotide polymorphisms, suggested that beans originating from central and north-west Mexico and Oaxaca, in the driest parts of their distribution, produced more biomass and were deeper-rooted. Nevertheless, deeper rooting was correlated with less root biomass production relative to total biomass. Compared with wild types, domesticated types showed a stronger reduction and delay in growth and development in response to drought stress. Specific genomic regions were associated with root depth, biomass productivity and drought response, some of which showed signals of selection and were previously related to productivity and drought tolerance. CONCLUSIONS: The drought tolerance of wild beans consists in its stronger ability, compared with domesticated types, to continue growth in spite of water-limited conditions. This study is the first to relate bean response to drought to environment of origin for a diverse selection of wild beans. It provides information that needs to be corroborated in crosses between wild and domesticated beans to make it applicable to breeding programmes.


Assuntos
Phaseolus , Aclimatação , Adaptação Fisiológica , Secas , México
7.
Plant Physiol ; 174(2): 1082-1096, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28432257

RESUMO

In agricultural and natural systems, diffuse light can enhance plant primary productivity due to deeper penetration into and greater irradiance of the entire canopy. However, for individual sun-grown leaves from three species, photosynthesis is actually less efficient under diffuse compared with direct light. Despite its potential impact on canopy-level productivity, the mechanism for this leaf-level diffuse light photosynthetic depression effect is unknown. Here, we investigate if the spatial distribution of light absorption relative to electron transport capacity in sun- and shade-grown sunflower (Helianthus annuus) leaves underlies its previously observed diffuse light photosynthetic depression. Using a new one-dimensional porous medium finite element gas-exchange model parameterized with light absorption profiles, we found that weaker penetration of diffuse versus direct light into the mesophyll of sun-grown sunflower leaves led to a more heterogenous saturation of electron transport capacity and lowered its CO2 concentration drawdown capacity in the intercellular airspace and chloroplast stroma. This decoupling of light availability from photosynthetic capacity under diffuse light is sufficient to generate an 11% decline in photosynthesis in sun-grown but not shade-grown leaves, primarily because thin shade-grown leaves similarly distribute diffuse and direct light throughout the mesophyll. Finally, we illustrate how diffuse light photosynthetic depression could overcome enhancement in canopies with low light extinction coefficients and/or leaf area, pointing toward a novel direction for future research.


Assuntos
Absorção de Radiação , Dióxido de Carbono/metabolismo , Helianthus/fisiologia , Helianthus/efeitos da radiação , Luz , Células do Mesofilo/metabolismo , Células do Mesofilo/efeitos da radiação , Fotossíntese/efeitos da radiação , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Transporte de Elétrons/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Probabilidade
8.
New Phytol ; 215(4): 1609-1622, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28691233

RESUMO

The mesophyll surface area exposed to intercellular air space per leaf area (Sm ) is closely associated with CO2 diffusion and photosynthetic rates. Sm is typically estimated from two-dimensional (2D) leaf sections and corrected for the three-dimensional (3D) geometry of mesophyll cells, leading to potential differences between the estimated and actual cell surface area. Here, we examined how 2D methods used for estimating Sm compare with 3D values obtained from high-resolution X-ray microcomputed tomography (microCT) for 23 plant species, with broad phylogenetic and anatomical coverage. Relative to 3D, uncorrected 2D Sm estimates were, on average, 15-30% lower. Two of the four 2D Sm methods typically fell within 10% of 3D values. For most species, only a few 2D slices were needed to accurately estimate Sm within 10% of the whole leaf sample median. However, leaves with reticulate vein networks required more sections because of a more heterogeneous vein coverage across slices. These results provide the first comparison of the accuracy of 2D methods in estimating the complex 3D geometry of internal leaf surfaces. Because microCT is not readily available, we provide guidance for using standard light microscopy techniques, as well as recommending standardization of reporting Sm values.


Assuntos
Bromeliaceae/anatomia & histologia , Imageamento Tridimensional , Células do Mesofilo/metabolismo , Bromeliaceae/fisiologia , Propriedades de Superfície , Microtomografia por Raio-X
9.
Plant Cell Environ ; 40(5): 726-740, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28039917

RESUMO

Mesophyll conductance to CO2 (gm ) may respond to light either through regulated dynamic mechanisms or due to anatomical and structural factors. At low light, some layers of cells in the leaf cross-section approach photocompensation and contribute minimally to bulk leaf photosynthesis and little to whole leaf gm (gm,leaf ). Thus, the bulk gm,leaf will appear to respond to light despite being based upon cells having an anatomically fixed mesophyll conductance. Such behaviour was observed in species with contrasting leaf structure using the variable J or stable isotope method of measuring gm,leaf . A species with bifacial structure, Arbutus × 'Marina', and an isobilateral species, Triticum durum L., had contrasting responses of gm,leaf upon varying adaxial or abaxial illumination. Anatomical observations, when coupled with the proposed model of gm,leaf to photosynthetic photon flux density (PPFD) response, successfully represented the observed gas exchange data. The theoretical and observed evidence that gm,leaf apparently responds to light has large implications for how gm,leaf values are interpreted, particularly limitation analyses, and indicates the importance of measuring gm under full light saturation. Responses of gm,leaf to the environment should be treated as an emergent property of a distributed 3D structure, and not solely a leaf area-based phenomenon.


Assuntos
Ericaceae/anatomia & histologia , Luz , Células do Mesofilo/fisiologia , Células do Mesofilo/efeitos da radiação , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos da radiação , Triticum/anatomia & histologia , Simulação por Computador , Ericaceae/fisiologia , Ericaceae/efeitos da radiação , Modelos Biológicos , Fótons , Fotossíntese/efeitos da radiação , Folhas de Planta/fisiologia , Reprodutibilidade dos Testes , Triticum/fisiologia , Triticum/efeitos da radiação
10.
Plant Methods ; 19(1): 29, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978119

RESUMO

BACKGROUND: Remote sensing instruments enable high-throughput phenotyping of plant traits and stress resilience across scale. Spatial (handheld devices, towers, drones, airborne, and satellites) and temporal (continuous or intermittent) tradeoffs can enable or constrain plant science applications. Here, we describe the technical details of TSWIFT (Tower Spectrometer on Wheels for Investigating Frequent Timeseries), a mobile tower-based hyperspectral remote sensing system for continuous monitoring of spectral reflectance across visible-near infrared regions with the capacity to resolve solar-induced fluorescence (SIF). RESULTS: We demonstrate potential applications for monitoring short-term (diurnal) and long-term (seasonal) variation of vegetation for high-throughput phenotyping applications. We deployed TSWIFT in a field experiment of 300 common bean genotypes in two treatments: control (irrigated) and drought (terminal drought). We evaluated the normalized difference vegetation index (NDVI), photochemical reflectance index (PRI), and SIF, as well as the coefficient of variation (CV) across the visible-near infrared spectral range (400 to 900 nm). NDVI tracked structural variation early in the growing season, following initial plant growth and development. PRI and SIF were more dynamic, exhibiting variation diurnally and seasonally, enabling quantification of genotypic variation in physiological response to drought conditions. Beyond vegetation indices, CV of hyperspectral reflectance showed the most variability across genotypes, treatment, and time in the visible and red-edge spectral regions. CONCLUSIONS: TSWIFT enables continuous and automated monitoring of hyperspectral reflectance for assessing variation in plant structure and function at high spatial and temporal resolutions for high-throughput phenotyping. Mobile, tower-based systems like this can provide short- and long-term datasets to assess genotypic and/or management responses to the environment, and ultimately enable the spectral prediction of resource-use efficiency, stress resilience, productivity and yield.

11.
Plant Phenomics ; 5: 0021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37040284

RESUMO

Proximal remote sensing offers a powerful tool for high-throughput phenotyping of plants for assessing stress response. Bean plants, an important legume for human consumption, are often grown in regions with limited rainfall and irrigation and are therefore bred to further enhance drought tolerance. We assessed physiological (stomatal conductance and predawn and midday leaf water potential) and ground- and tower-based hyperspectral remote sensing (400 to 2,400 nm and 400 to 900 nm, respectively) measurements to evaluate drought response in 12 common bean and 4 tepary bean genotypes across 3 field campaigns (1 predrought and 2 post-drought). Hyperspectral data in partial least squares regression models predicted these physiological traits (R 2 = 0.20 to 0.55; root mean square percent error 16% to 31%). Furthermore, ground-based partial least squares regression models successfully ranked genotypic drought responses similar to the physiologically based ranks. This study demonstrates applications of high-resolution hyperspectral remote sensing for predicting plant traits and phenotyping drought response across genotypes for vegetation monitoring and breeding population screening.

12.
Plant Physiol ; 157(3): 1419-29, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21951466

RESUMO

The mechanism of embolism repair in transpiring plants is still not understood, despite significant scientific effort. The refilling process is crucial to maintaining stem transport capacity and ensuring survival for plants experiencing dynamic changes in water stress. Refilling air-filled xylem vessels requires an energy and water source that can only be provided by adjacent living parenchyma cells. Here, we report an analysis of the transcriptome response of xylem parenchyma cells after embolism formation in Populus trichocarpa trees. Genes encoding aquaporins, ion transporters, and carbohydrate metabolic pathways were up-regulated, and there was a significant reduction in the expression of genes responding to oxidative stress. Thus, a novel view of the plant response to embolism emerges that suggests a role for oxygen in embolized vessels as a signal triggering xylem refilling and for the activity of cation transport as having a significant role in the generation of the energy gradient necessary to heal embolized vessels. These findings redefine current hypotheses surrounding the refilling phenomenon and provide insight into the complexity of the biological response to the seemingly simple physical event of xylem embolism formation.


Assuntos
Ar , Caules de Planta/genética , Caules de Planta/fisiologia , Populus/genética , Populus/fisiologia , Transdução de Sinais/genética , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Modelos Biológicos , Hibridização de Ácido Nucleico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/efeitos dos fármacos , Populus/efeitos dos fármacos , Populus/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Sacarose/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos
13.
Plant Physiol ; 156(2): 962-73, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21459977

RESUMO

Bundle sheath extensions (BSEs) are key features of leaf structure with currently little-understood functions. To test the hypothesis that BSEs reduce the hydraulic resistance from the bundle sheath to the epidermis (r(be)) and thereby accelerate hydropassive stomatal movements, we compared stomatal responses with reduced humidity and leaf excision among 20 species with heterobaric or homobaric leaves and herbaceous or woody life forms. We hypothesized that low r(be) due to the presence of BSEs would increase the rate of stomatal opening (V) during transient wrong-way responses, but more so during wrong-way responses to excision (V(e)) than humidity (V(h)), thus increasing the ratio of V(e) to V(h). We predicted the same trends for herbaceous relative to woody species given greater hydraulic resistance in woody species. We found that V(e), V(h), and their ratio were 2.3 to 4.4 times greater in heterobaric than homobaric leaves and 2.0 to 3.1 times greater in herbaceous than woody species. To assess possible causes for these differences, we simulated these experiments in a dynamic compartment/resistance model, which predicted larger V(e) and V(e)/V(h) in leaves with smaller r(be). These results support the hypothesis that BSEs reduce r(be). Comparison of our data and simulations suggested that r(be) is approximately 4 to 16 times larger in homobaric than heterobaric leaves. Our study provides new evidence that variations in the distribution of hydraulic resistance within the leaf and plant are central to understanding dynamic stomatal responses to water status and their ecological correlates and that BSEs play several key roles in the functional ecology of heterobaric leaves.


Assuntos
Estômatos de Plantas/fisiologia , Feixe Vascular de Plantas/fisiologia , Água/fisiologia , Umidade , Cinética , Modelos Biológicos , Olea/fisiologia
14.
J Exp Bot ; 62(8): 2875-87, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21339387

RESUMO

Intrinsic water use efficiency (WUE(intr)), the ratio of photosynthesis to stomatal conductance to water, is often used as an index for crop water use in breeding projects. However, WUE(intr) conflates variation in these two processes, and thus may be less useful as a selection trait than knowledge of both components. The goal of the present study was to determine whether the contribution of photosynthetic capacity and stomatal conductance to WUE(intr) varied independently between soybean genotypes and whether this pattern was interactive with mild drought. Photosynthetic capacity was defined as the variation in WUE(intr) that would occur if genotypes of interest had the same stomatal conductance as a reference genotype and only differed in photosynthesis; similarly, the contribution of stomatal conductance to WUE(intr) was calculated assuming a constant photosynthetic capacity across genotypes. Genotypic differences in stomatal conductance had the greatest effect on WUE(intr) (26% variation when well watered), and was uncorrelated with the effect of photosynthetic capacity on WUE(intr). Thus, photosynthetic advantages of 8.3% were maintained under drought. The maximal rate of Rubisco carboxylation, generally the limiting photosynthetic process for soybeans, was correlated with photosynthetic capacity. As this trait was not interactive with leaf temperature, and photosynthetic capacity differences were maintained under mild drought, the observed patterns of photosynthetic advantage for particular genotypes are likely to be consistent across a range of environmental conditions. This suggests that it is possible to employ a selection strategy of breeding water-saving soybeans with high photosynthetic capacities to compensate for otherwise reduced photosynthesis in genotypes with lower stomatal conductance.


Assuntos
Secas , Glycine max/genética , Glycine max/fisiologia , Fotossíntese/fisiologia , Estômatos de Plantas/fisiologia , Água/metabolismo , Genótipo , Pressão de Vapor
15.
Tree Physiol ; 41(12): 2438-2453, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34100073

RESUMO

Sap velocity measurements are useful in fields ranging from plant water relations to hydrology at a variety of scales. Techniques based on pulses of heat are among the most common methods to measure sap velocity, but most lack ability to measure velocities across a wide range, including very high, very low and negative velocities (reverse flow). We propose a new method, the double-ratio method (DRM), which is robust across an unprecedented range of sap velocities and provides real-time estimates of the thermal diffusivity of wood. The DRM employs one temperature sensor upstream (proximal) and two sensors downstream (distal) to the source of heat. This facilitates several theoretical, heat-based approaches to quantifying sap velocity. We tested the DRM using whole-tree lysimetry in Eucalyptus cypellocarpa L.A.S. Johnson and found strong agreement across a wide range of velocities.


Assuntos
Eucalyptus , Árvores , Temperatura Alta , Transpiração Vegetal , Água , Madeira
16.
J Vis Exp ; (147)2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31132041

RESUMO

Ceptometry is a technique used to measure the transmittance of photosynthetically active radiation through a plant canopy using multiple light sensors connected in parallel on a long bar. Ceptometry is often used to infer properties of canopy structure and light interception, notably leaf area index (LAI) and effective plant area index (PAIeff). Due to the high cost of commercially available ceptometers, the number of measurements that can be taken is often limited in space and time. This limits the usefulness of ceptometry for studying genetic variability in light interception, and precludes thorough analysis of, and correction for, biases that can skew measurements depending on the time of day. We developed continuously logging ceptometers (called PARbars) that can be produced for USD $75 each and yield high quality data comparable to commercially available alternatives. Here we provide detailed instruction on how to build and calibrate PARbars, how to deploy them in the field and how to estimate PAI from collected transmittance data. We provide representative results from wheat canopies and discuss further considerations that should be made when using PARbars.


Assuntos
Luz , Óptica e Fotônica/instrumentação , Fotossíntese , Folhas de Planta/efeitos da radiação , Calibragem , Fotossíntese/efeitos da radiação , Estações do Ano , Fatores de Tempo , Triticum/crescimento & desenvolvimento , Triticum/efeitos da radiação
17.
Plant Cell Environ ; 31(7): 1038-50, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18410490

RESUMO

The regional abundance of C(4) grasses is strongly controlled by temperature, however, the role of precipitation is less clear. Progress in elucidating the direct effects of photosynthetic pathway on these climate relationships is hindered by the significant genetic divergence between major C(3) and C(4) grass lineages. We addressed this problem by examining seasonal climate responses of photosynthesis in Alloteropsis semialata, a unique grass species with both C(3) and C(4) subspecies. Experimental manipulation of rainfall in a common garden in South Africa tested the hypotheses that: (1) photosynthesis is greater in the C(4) than C(3) subspecies under high summer temperatures, but this pattern is reversed at low winter temperatures; and (2) the photosynthetic advantage of C(4) plants is enhanced during drought events. Measurements of leaf gas exchange over 2 years showed a significant photosynthetic advantage for the C(4) subspecies under irrigated conditions from spring through autumn. However, the C(4) leaves were killed by winter frost, while photosynthesis continued in the C(3) plants. Unexpectedly, the C(4) subspecies also lost its photosynthetic advantage during natural drought events, despite greater water-use efficiency under irrigated conditions. This study highlights previously unrecognized roles for climatic extremes in determining the ecological success of C(3) and C(4) grasses.


Assuntos
Desastres , Congelamento , Fotossíntese , Poaceae/fisiologia , Estações do Ano , Especificidade da Espécie
18.
J Exp Bot ; 59(7): 1743-54, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18403381

RESUMO

The species richness of C(4) grasses is strongly correlated with temperature, with C(4) species dominating subtropical ecosystems and C(3) types predominating in cooler climates. Here, the effects of low temperatures on C(4) and C(3) grasses are compared, controlling for phylogenetic effects by using Alloteropsis semialata, a unique species with C(4) and C(3) subspecies. Controlled environment and common garden experiments tested the hypotheses that: (i) photosynthesis and growth are greater in the C(4) than the C(3) subspecies at high temperatures, but this advantage is reversed below 20 degrees C; and (ii) chilling-induced photoinhibition and light-mediated freezing injury of leaves occur at higher temperature thresholds in the C(4) than the C(3) plants. Measurements of leaf growth and photosynthesis showed the expected advantages of the C(4) pathway over the C(3) type at high temperatures. These declined with temperature, but were not completely lost until 15 degrees C, and there was no evidence of a reversal to give a C(3) advantage. Chronic chilling (5-15 degrees C) or acute freezing events induced a comparable degree of photodamage in illuminated leaves of both subspecies. Similarly, freezing caused high rates of mortality in the unhardened leaves of both subtypes. However, a 2-week chilling treatment prior to these freezing events halved injury in the C(3) but not the C(4) subspecies, suggesting that C(4) leaves lacked the capacity for cold acclimation. These results therefore suggest that C(3) members of this subtropical species may gain an advantage over their C(4) counterparts at low temperatures via protection from freezing injury rather than higher photosynthetic rates.


Assuntos
Carbono/metabolismo , Temperatura Baixa , Folhas de Planta/fisiologia , Poaceae/classificação , Poaceae/fisiologia , Aclimatação , Fotossíntese/fisiologia
19.
Physiol Plant ; 134(3): 464-72, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18636986

RESUMO

The stimulation of dune plant growth in response to burial is a vital attribute allowing survival in areas of mobile sand. Numerous resource-related and physiological mechanisms of growth stimulation have been suggested in the past, but few have been tested comparatively. Manipulation experiments using Scaevola plumieri, an important subtropical coastal dune forming species, demonstrated that physiological shifts were of great importance in determining the nature of the stimulation response to burial. The production of stem length and replacement of leaf area were stimulated by burial, whereas net mass production was similar between buried and unburied treatments. Remobilization of buried leaf resources, seasonal effects, and a shift in biomass allocation to stem production played the greatest role in the compensatory growth response. Other factors, such as increased soil nutrients, changes in photosynthesis, and changes in the costs of producing tissue were of less importance. Thus, the stimulated growth of species adapted to live on mobile dunes is explained by a number of resource-related and physiological mechanisms acting in concert.


Assuntos
Biomassa , Campanulaceae/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Dióxido de Silício , Fertilizantes , Gases/metabolismo , Modelos Biológicos , Nitrogênio/metabolismo , Brotos de Planta/fisiologia , Caules de Planta/fisiologia , Estações do Ano
20.
Plant Methods ; 14: 80, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30214467

RESUMO

BACKGROUND: Existing methods for directly measuring photosynthetic capacity (Amax) have low throughput, which creates a key bottleneck for pre-breeding and ecological research. Currently available commercial leaf gas exchange systems are not designed to maximize throughput, on either a cost or time basis. RESULTS: We present a novel multiplexed semi-portable gas exchange system, OCTOflux, that can measure Amax with approximately 4-7 times the throughput of commercial devices, despite a lower capital cost. The main time efficiency arises from having eight leaves simultaneously acclimate to saturating CO2 and high light levels; the long acclimation periods for each leaf (13.8 min on average in this study) thus overlap to a large degree, rather than occurring sequentially. The cost efficiency arises partly from custom-building the system and thus avoiding commercial costs like distribution, marketing and profit, and partly from optimizing the system's design for Amax throughput rather than flexibility for other types of measurements. CONCLUSION: Throughput for Amax measurements can be increased greatly, on both a cost and time basis, by multiplexing gas streams from several leaf chambers connected to a single gas analyzer. This can help overcome the bottleneck in breeding and ecological research posed by limited phenotyping throughput for Amax.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA