Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(31): 18401-18411, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32690709

RESUMO

Disparities in cancer patient responses have prompted widespread searches to identify differences in sensitive vs. nonsensitive populations and form the basis of personalized medicine. This customized approach is dependent upon the development of pathway-specific therapeutics in conjunction with biomarkers that predict patient responses. Here, we show that Cdk5 drives growth in subgroups of patients with multiple types of neuroendocrine neoplasms. Phosphoproteomics and high throughput screening identified phosphorylation sites downstream of Cdk5. These phosphorylation events serve as biomarkers and effectively pinpoint Cdk5-driven tumors. Toward achieving targeted therapy, we demonstrate that mouse models of neuroendocrine cancer are responsive to selective Cdk5 inhibitors and biomimetic nanoparticles are effective vehicles for enhanced tumor targeting and reduction of drug toxicity. Finally, we show that biomarkers of Cdk5-dependent tumors effectively predict response to anti-Cdk5 therapy in patient-derived xenografts. Thus, a phosphoprotein-based diagnostic assay combined with Cdk5-targeted therapy is a rational treatment approach for neuroendocrine malignancies.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Tumores Neuroectodérmicos/tratamento farmacológico , Fosfoproteínas/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Xenoenxertos , Humanos , Camundongos , Neoplasias/genética , Tumores Neuroectodérmicos/genética , Tumores Neuroectodérmicos/metabolismo , Fosfoproteínas/análise , Fosfoproteínas/genética , Fosforilação
2.
Neurodegener Dis ; 17(2-3): 83-88, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27760429

RESUMO

BACKGROUND AND OBJECTIVE: Reduced progranulin levels are a hallmark of frontotemporal dementia (FTD) caused by loss-of-function (LoF) mutations in the progranulin gene (GRN). However, alterations of central nervous progranulin expression also occur in neurodegenerative disorders unrelated to GRN mutations, such as Alzheimer's disease. We hypothesised that central nervous progranulin levels are also reduced in GRN-negative FTD. METHODS: Progranulin levels were determined in both cerebrospinal fluid (CSF) and serum in 75 subjects (37 FTD patients and 38 controls). All FTD patients were assessed by whole-exome sequencing for GRN mutations, yielding a target cohort of 34 patients without pathogenic mutations in GRN (GRN-negative cohort) and 3 GRN mutation carriers (2 LoF variants and 1 novel missense variant). RESULTS: Not only the GRN mutation carriers but also the GRN-negative patients showed decreased CSF levels of progranulin (serum levels in GRN-negative patients were normal). The decreased CSF progranulin levels were unrelated to patients' increased CSF levels of total tau, possibly indicating different destructive neuronal processes within FTD neurodegeneration. The patient with the novel GRN missense variant (c.1117C>T, p.P373S) showed substantially decreased CSF levels of progranulin, comparable to the 2 patients with GRN LoF mutations, suggesting a pathogenic effect of this missense variant. CONCLUSIONS: Our results indicate that central nervous progranulin reduction is not restricted to the relatively rare cases of FTD caused by GRN LoF mutations, but also contributes to the more common GRN-negative forms of FTD. Central nervous progranulin reduction might reflect a partially distinct pathogenic mechanism underlying FTD neurodegeneration and is not directly linked to tau alterations.


Assuntos
Demência Frontotemporal/sangue , Demência Frontotemporal/líquido cefalorraquidiano , Demência Frontotemporal/genética , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Peptídeos e Proteínas de Sinalização Intercelular/líquido cefalorraquidiano , Peptídeos e Proteínas de Sinalização Intercelular/genética , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Mutação de Sentido Incorreto , Fosforilação , Polimorfismo de Nucleotídeo Único , Progranulinas , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo
3.
Acta Neuropathol ; 131(3): 379-91, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26576561

RESUMO

Extracellular alpha-synuclein (αsyn) oligomers, associated to exosomes or free, play an important role in the pathogenesis of Parkinson's disease (PD). Increasing evidence suggests that these extracellular moieties activate microglia leading to enhanced neuronal damage. Despite extensive efforts on studying neuroinflammation in PD, little is known about the impact of age on microglial activation and phagocytosis, especially of extracellular αsyn oligomers. Here, we show that microglia isolated from adult mice, in contrast to microglia from young mice, display phagocytosis deficits of free and exosome-associated αsyn oligomers combined with enhanced TNFα secretion. In addition, we describe a dysregulation of monocyte subpopulations with age in mice and humans. Accordingly, human monocytes from elderly donors also show reduced phagocytic activity of extracellular αsyn. These findings suggest that these age-related alterations may contribute to an increased susceptibility to pathogens or abnormally folded proteins with age in neurodegenerative diseases.


Assuntos
Envelhecimento/metabolismo , Microglia/metabolismo , Monócitos/metabolismo , alfa-Sinucleína/metabolismo , Animais , Células Cultivadas , Cromatografia em Gel , Ensaio de Imunoadsorção Enzimática , Exossomos/metabolismo , Feminino , Citometria de Fluxo , Humanos , Immunoblotting , Camundongos , Doença de Parkinson/metabolismo , Fagocitose/fisiologia
4.
Glia ; 62(7): 1075-92, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24652679

RESUMO

Increasing evidence suggests that Parkinson's disease (PD)-linked Leucine-rich repeat kinase 2 (LRRK2) has a role in peripheral and brain-resident immune cells. Furthermore, dysregulation of the anti-inflammatory, neurotrophic protein progranulin (PGRN) has been demonstrated in several chronic neurodegenerative diseases. Here we show that PGRN levels are significantly reduced in conditioned medium of LRRK2(R1441G) mutant mouse fibroblasts, leukocytes, and microglia, whereas levels of proinflammatory factors, like interleukin-1ß and keratinocyte-derived chemokine, were significantly increased. Decreased PGRN levels were also detected in supernatants of cultured human fibroblasts isolated from presymptomatic LRRK2(G2019S) mutation carriers, while mitochondrial function was unaffected. Furthermore, medium levels of matrix metalloprotease (MMP) 2 increased, whereas MMP 9 decreased in LRRK2(R1441G) mutant microglia. Increased proteolytic cleavage of the MMP substrates ICAM-5 and α-synuclein in synaptoneurosomes from LRRK2(R1441G) mutant mouse brain indicates increased net synaptic MMP activity. PGRN levels were decreased in the cerebrospinal fluid of presymptomatic LRRK2 mutant mice, whereas PGRN levels were increased in aged symptomatic mutant mice. Notably, PGRN levels were also increased in the cerebrospinal fluid of PD patients carrying LRRK2 mutations, but not in idiopathic PD patients and in healthy control donors. Our data suggest that proinflammatory activity of peripheral and brain-resident immune cells may particularly contribute to the early stages of Parkinson's disease caused by LRRK2 mutations.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metaloproteinases da Matriz/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Células Cultivadas , Quimiocinas/metabolismo , Feminino , Fibroblastos/fisiologia , Granulinas , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/líquido cefalorraquidiano , Interleucina-1beta/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Leucócitos/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Microglia/fisiologia , Mutação , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/fisiopatologia , Progranulinas , Proteínas Serina-Treonina Quinases/genética , Células Swiss 3T3
5.
Neurobiol Dis ; 54: 280-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23318930

RESUMO

Recent studies indicate that the Parkinson's disease-linked leucine-rich repeat kinase 2 (LRRK2) modulates cytoskeletal functions by regulating actin and tubulin dynamics, thereby affecting neurite outgrowth. By interactome analysis we demonstrate that the binding of LRRK2 to tubulins is significantly enhanced by pharmacological LRRK2 inhibition in cells. Co-incubation of LRRK2 with microtubules increased the LRRK2 GTPase activity in a cell-free assay. Destabilization of microtubules causes a rapid decrease in cellular LRRK2(S935) phosphorylation indicating a decreased LRRK2 kinase activity. Moreover, both human LRRK2(G2019S) fibroblasts and mouse LRRK2(R1441G) fibroblasts exhibit alterations in cell migration in culture. Treatment of mouse fibroblasts with the selective LRRK2 inhibitor LRRK2-IN1 reduces cell motility. These findings suggest that LRRK2 and microtubules mutually interact both in non-neuronal cells and in neurons, which might contribute to our understanding of its pathogenic effects in Parkinson's disease.


Assuntos
Movimento Celular/fisiologia , Fibroblastos/metabolismo , Microtúbulos/metabolismo , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Feminino , Transferência Ressonante de Energia de Fluorescência , Humanos , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Masculino , Camundongos , Células Swiss 3T3
6.
J Neurosci Methods ; 368: 109457, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34953937

RESUMO

BACKGROUND: Recombinant adeno-associated virus (AAV) is the most widely used vector for gene therapy in clinical trials. To increase transduction efficiency and specificity, novel engineered AAV variants with modified capsid sequences are evaluated in human cell cultures and non-human primates. METHODS: We tested two novel AAV capsid variants, AAV2-NNPTPSR and AAV9-NVVRSSS, in human cortical neurons, which were directly converted from human induced pluripotent stem cells and cocultured with rat primary astrocytes. RESULTS: AAV2-NNPTPSR variant efficiently transduced both induced human cortical glutamatergic neurons and induced human cortical GABAergic interneurons. By contrast, AAV9-NVVRSSS variant transduced both induced human cortical neurons and cocultured rat primary astrocytes. High viral titers (1E+5 viral genomes per cell) caused a significant decrease in viability of induced human cortical neurons. Low viral titers (1E+4 viral genomes per cell) led to a significant increase in the neuronal activity marker c-Fos in transduced human neurons following treatment with a potassium channel blocker. CONCLUSIONS: We identified two engineered AAV capsid variants that efficiently transduce induced human cortical neurons. The threefold higher percentage of c-Fos positive, transduced human neurons may indicate functional alterations induced by viral transduction and/or transgene expression.


Assuntos
Dependovirus , Células-Tronco Pluripotentes Induzidas , Animais , Capsídeo/metabolismo , Dependovirus/genética , Vetores Genéticos , Humanos , Neurônios , Ratos , Transdução Genética
7.
Oncogenesis ; 10(12): 83, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862365

RESUMO

Pancreatic neuroendocrine tumors (PanNETs) are a heterogeneous population of neoplasms that arise from hormone-secreting islet cells of the pancreas and have increased markedly in incidence over the past four decades. Non-functional PanNETs, which occur more frequently than hormone-secreting tumors, are often not diagnosed until later stages of tumor development and have poorer prognoses. Development of successful therapeutics for PanNETs has been slow, partially due to a lack of diverse animal models for pre-clinical testing. Here, we report development of an inducible, conditional mouse model of PanNETs by using a bi-transgenic system for regulated expression of the aberrant activator of Cdk5, p25, specifically in ß-islet cells. This model produces a heterogeneous population of PanNETs that includes a subgroup of well-differentiated, non-functional tumors. Production of these tumors demonstrates the causative potential of aberrantly active Cdk5 for generation of PanNETs. Further, we show that human PanNETs express Cdk5 pathway components, are dependent on Cdk5 for growth, and share genetic and transcriptional overlap with the INS-p25OE model. The utility of this model is enhanced by the ability to form tumor-derived allografts. This new model of PanNETs will facilitate molecular delineation of Cdk5-dependent PanNETs and the development of new targeted therapeutics.

8.
J Neurochem ; 114(2): 419-29, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20412383

RESUMO

The E46K is a point mutation in alpha-synuclein (alpha-syn) that causes familial Parkinsonism with Lewy body dementia. We have now generated a cell model of Parkinsonism/Parkinson's disease (PD) and demonstrated cell toxicity after expression of E46K in the differentiated PC12 cells. E46K alpha-syn inhibited proteasome activity and induced mitochondrial depolarization in the cell model. Baicalein has been reported to inhibit fibrillation of wild type alpha-syn in vitro, and to protect neurons against several chemical-induced models of PD. We now report that baicalein significantly attenuated E46K-induced mitochondrial depolarization and proteasome inhibition, and protected cells against E46K-induced toxicity in a cell model of PD. Baicalein also reduced E46K fibrilization in vitro, with a concentration-dependent decrease in beta sheet conformation, though it increased some oligomeric species, and decreased formation of E46K alpha-syn-induced aggregates and rescued toxicity in N2A cells. Taken together, these data indicate that mitochondrial dysfunction, proteasome inhibition and specific aspects of abnormal E46K aggregation accompany E46K alpha-syn-induced cell toxicity, and baicalein can protect as well as altering aggregation properties. Baicalein has potential as a tool to understand the relation between different aggregation species and toxicity, and might be a candidate compound for further validation by using in vivo alpha-syn genetic PD models.


Assuntos
Flavanonas/farmacologia , Transtornos Parkinsonianos/metabolismo , alfa-Sinucleína/genética , Animais , Morte Celular , Diferenciação Celular , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mutação , Neurônios/metabolismo , Neurônios/ultraestrutura , Células PC12 , Transtornos Parkinsonianos/genética , Inibidores de Proteassoma , Ratos , alfa-Sinucleína/biossíntese
9.
Anal Biochem ; 404(1): 45-51, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20434426

RESUMO

Mutations within the LRRK2 (leucine-rich repeat kinase 2) gene predispose humans to develop late-onset Parkinson's disease (PD). The most prevalent of these mutations, G2019S, has been shown to increase LRRK2 kinase activity. Therefore, the discovery of small molecule inhibitors of LRRK2(G2019S) through high-throughput screening (HTS) may provide a novel therapeutic strategy for treating PD. Current biochemical assays monitoring the activity of LRRK2(G2019S) either are radioactive or use short peptidic substrates. Here we describe the development and optimization of a novel HTS AlphaScreen assay for measuring the catalytic activity of full-length LRRK2(G2019S) using its putative physiological protein substrate moesin. The high sensitivity of this optimized 384-well assay allowed the use of enzyme concentrations as low as 0.75nM. The estimated apparent K(m) value for adenosine triphosphate (6 microM) using the glutathione S-transferase-moesin substrate was much lower than the one previously reported using LRRKtide, a synthetic peptide derived from moesin. Testing of nonselective kinase inhibitors (staurosporine, H-1152, and Y-27632) generated potencies consistent with published data. Finally, robotic validation of the assay yielded an average Z' factor of 0.80. Overall, these results indicate that the present HTS AlphaScreen assay might provide a more relevant biochemical approach for the discovery of novel LRRK2(G2019S) inhibitors.


Assuntos
Imunoensaio/métodos , Proteínas dos Microfilamentos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Ensaios de Triagem em Larga Escala , Humanos , Cinética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Mutagênese Sítio-Dirigida , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Tempo
10.
Mol Cell Neurosci ; 42(4): 427-37, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19782753

RESUMO

CNS regeneration is limited by lesion-induced neuronal apoptosis and an environment inhibiting axonal elongation. Inhibition of ROCK has been previously shown to promote regeneration in retinal ganglion cells (RGC) whereas Cdk5 inhibition mainly promoted survival. Therefore, we have evaluated the effects of combined treatment with inhibitors of ROCK and Cdk5. We show that in vitro, the co-application of the Cdk5 inhibitor, Indolinone A, and the ROCK inhibitor, Y-27632, potentiated the survival-promoting effect of either substance alone. However, neurite outgrowth in vitro was promoted only by the presence of Y-27632, not by Indolinone A alone. In the ex vivo explant and the in vivo optic nerve crush model the combination of both inhibitors significantly increased neurite outgrowth at small distances, but this effect leveled off for longer neurites. In summary, the combined treatment with the Cdk5 inhibitor Indolinone A and the ROCK inhibitor Y-27632 results in a strong additive effect on neuronal survival, but is not able to increase the regenerative response beyond the effect of the ROCK inhibitor.


Assuntos
Sobrevivência Celular/fisiologia , Quinase 5 Dependente de Ciclina/metabolismo , Regeneração Nervosa/fisiologia , Células Ganglionares da Retina/enzimologia , Células Ganglionares da Retina/fisiologia , Quinases Associadas a rho/metabolismo , Amidas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Indóis/farmacologia , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Compressão Nervosa , Regeneração Nervosa/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neuritos/fisiologia , Neuritos/ultraestrutura , Fosfotransferases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Ratos , Ratos Wistar , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Tubulina (Proteína)/metabolismo , Quinases Associadas a rho/antagonistas & inibidores
11.
Neuroscience ; 448: 234-254, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32890664

RESUMO

Both rare, high risk, loss-of-function mutations and common, low risk, genetic variants in the CUL3 gene are strongly associated with neuropsychiatric disorders. Network analyses of neuropsychiatric risk genes have shown high CUL3 expression in the prenatal human brain and an enrichment in neural precursor cells (NPCs) and cortical neurons. The role of CUL3 in human neurodevelopment however, is poorly understood. In the present study, we used CRISPR/Cas9 nickase to knockout CUL3 in human induced pluripotent stem cells (iPSCs). iPSCs were subsequently differentiated into cortical glutamatergic neurons using two different protocols and tested for structural/functional alterations. Immunocytochemical analysis and transcriptomic profiling revealed that pluripotency of heterozygous CUL3 knockout (KO) iPSCs remained unchanged compared to isogenic control iPSCs. Following small molecule-mediated differentiation into cortical glutamatergic neurons however, we detected a significant delay in transition from proliferating radial glia cells/NPCs to postmitotic neurons in CUL3 KO cultures. Notably, direct neural conversion of CUL3 KO iPSCs by lentiviral expression of Neurogenin-2 massively attenuated the neurodevelopmental delay. However, both optogenetic and electrical stimulation of induced neurons revealed decreased excitability in Cullin-3 deficient cultures, while basal synaptic transmission remained unchanged. Analysis of target gene expression pointed to alterations in FGF signaling in CUL3 KO NPCs, which is required for NPC proliferation and self-renewal, while RhoA and Notch signaling appeared unaffected. Our data provide first evidence for a major role of Cullin-3 in neuronal differentiation, and for neurodevelopmental deficits underlying neuropsychiatric disorders associated with CUL3 mutations.


Assuntos
Células-Tronco Pluripotentes Induzidas , Transtornos Mentais , Células-Tronco Neurais , Diferenciação Celular , Proteínas Culina/genética , Feminino , Humanos , Mutação , Gravidez
12.
Stem Cells Dev ; 29(24): 1577-1587, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33143549

RESUMO

Although the molecular underpinnings of schizophrenia (SZ) are still incompletely understood, deficits in synaptic activity and neuronal connectivity have been identified as core pathomechanisms of SZ and other neuropsychiatric disorders. In this study, we generated induced pluripotent stem cell (iPSC) lines from skin fibroblasts from healthy donors and patients diagnosed with idiopathic SZ. We differentiated the human iPSC into cortical neurons both as adherent monolayers and as three-dimensional spheroids. RNA sequencing revealed little overlap in differentially expressed genes between 2D and 3D neuron cultures from SZ iPSC compared with controls. Notably, mRNA transcripts encoding dipeptidyl peptidase-like protein 6 (DPP6), an accessory subunit of Kv4.2 voltage-gated potassium channels, were massively increased in cortical neurons from SZ iPSC in the 2D and 3D model. Consistently, multielectrode array recordings and calcium imaging showed significantly decreased neuronal activity both in 2D and in 3D cultures from SZ neurons. To show a causal relationship, we treated iPSC-derived neurons in 2D cultures with lentiviral DPP6 shRNA vectors and the Kv4.2 channel blocker AmmTx3, respectively. Both treatments successfully reversed neuronal hypoexcitability and hypoactivity in cortical neurons from SZ iPSC. Our data highlight a contribution of DPP6 and Kv4.2 to the deficit in neurotransmission in an iPSC model for SZ, which may be of therapeutic relevance for a subset of SZ patients.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Células-Tronco Pluripotentes Induzidas/patologia , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Canais de Potássio/genética , Subunidades Proteicas/genética , Esquizofrenia/patologia , Canais de Potássio Shal/genética , Cálcio/metabolismo , Proliferação de Células , Sobrevivência Celular , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Neurônios GABAérgicos/metabolismo , Regulação da Expressão Gênica , Ácido Glutâmico/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Canais de Potássio/metabolismo , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Canais de Potássio Shal/metabolismo , Esferoides Celulares/patologia , Sinapses/metabolismo , Doadores de Tecidos
13.
Mol Neurobiol ; 57(2): 616-634, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31402430

RESUMO

The human KCTD13 gene is located within the 16p11.2 locus and copy number variants of this locus are associated with a high risk for neuropsychiatric diseases including autism spectrum disorder and schizophrenia. Studies in zebrafish point to a role of KCTD13 in proliferation of neural precursor cells which may contribute to macrocephaly in 16p11.2 deletion carriers. KCTD13 is highly expressed in the fetal human brain and in mouse cortical neurons, but its contribution to the development and function of mammalian neurons is not completely understood. In the present study, we deleted the KCTD13 gene in human-induced pluripotent stem cells (iPSCs) using CRISPR/Cas9 nickase. Following neural differentiation of KCTD13 deficient and isogenic control iPSC lines, we detected a moderate but significant inhibition of DNA synthesis and proliferation in KCTD13 deficient human neural precursor cells. KCTD13 deficient cortical neurons derived from iPSCs showed decreased neurite formation and reduced spontaneous network activity. RNA-sequencing and pathway analysis pointed to a role for ERBB signaling in these phenotypic changes. Consistently, activating and inhibiting ERBB kinases rescued and aggravated, respectively, impaired neurite formation. In contrast to findings in non-neuronal human HeLa cells, we did not detect an accumulation of the putative KCTD13/Cullin-3 substrate RhoA, and treatment with inhibitors of RhoA signaling did not rescue decreased neurite formation in human KCTD13 knockout neurons. Taken together, our data provide insight into the role of KCTD13 in neurodevelopmental disorders, and point to ERBB signaling as a potential target for neuropsychiatric disorders associated with KCTD13 deficiency.


Assuntos
Sistemas CRISPR-Cas/genética , Córtex Cerebral/patologia , Técnicas de Inativação de Genes , Predisposição Genética para Doença , Células-Tronco Pluripotentes Induzidas/patologia , Transtornos Mentais/genética , Neurônios/patologia , Proteínas Nucleares/genética , Sequência de Bases , Proteína 9 Associada à CRISPR/metabolismo , Diferenciação Celular , Proliferação de Células , DNA/biossíntese , Humanos , Células-Tronco Neurais/metabolismo , Neuritos/metabolismo , Proteínas Nucleares/deficiência , Receptor ErbB-2/metabolismo , Fatores de Risco , Proteína rhoA de Ligação ao GTP/metabolismo
14.
J Neurochem ; 110(5): 1514-22, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19545277

RESUMO

Autosomal dominant mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of late-onset Parkinson's disease. The most prevalent LRRK2(G2019S) mutation has repeatedly been shown to enhance kinase activity and neurotoxicity, however, the molecular mechanisms leading to neurodegeneration remain poorly defined. Here we show that recombinant human LRRK2 preferentially phosphorylates tubulin-beta purified from bovine brain and that phosphorylation is three-fold enhanced by the LRRK2(G2019S) mutation. By tandem mass spectrometry, Thr107 was identified as phosphorylation site which is highly conserved between tubulin-beta family members and also between tubulin-beta genes of different species. LRRK2 was co-immunoprecipitated with tubulin-beta both from wild-type mouse brain and from LRRK2 over-expressing, non-neuronal human embryonic kidney 293 cells. However, an effect of LRRK2 on tubulin phosphorylation and assembly was only detectable in mouse brain samples. In vitro co-incubation of bovine brain tubulins with LRRK2 increased microtubule stability in the presence of microtubule-associated proteins which may explain the reduction in neurite length in LRRK2-deficient neurons in culture. These findings suggest that LRRK2(G2019S)-induced neurodegeneration in Parkinsonian brains may be partly mediated by increased phosphorylation of tubulin-beta and constraining of microtubule dynamics.


Assuntos
Encéfalo/metabolismo , Microtúbulos/metabolismo , Degeneração Neural/metabolismo , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Encéfalo/patologia , Bovinos , Linhagem Celular , Humanos , Insetos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/patologia , Degeneração Neural/genética , Degeneração Neural/patologia , Neuritos/fisiologia , Doença de Parkinson/patologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica
15.
Proteomics ; 8(10): 1980-6, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18491313

RESUMO

Cyclin-dependent kinase (Cdk) 5 is a serine/threonine kinase that plays an important role during CNS development and its dysregulation is causally involved in the process of neuronal degeneration. To date more than 20 Cdk5 substrates have been identified and the number of Cdk5 substrates is still increasing. The different cellular functions of Cdk5 and its substrates are not completely known at present. High-throughput protein microarray technology is a powerful tool to identify a large number of potential kinase substrates in parallel under the same experimental conditions. Using Protoarray protein microarrays we identified protein phosphatase 1, regulatory subunit 14A (PPP1R14A) as a novel substrate of Cdk5/p25. Phosphorylation was confirmed in two secondary assays. Our findings may contribute to the elucidation of the physiological function of Cdk5 in synaptic signalling. Functional Kinome Arrays were validated in a second set of experiments to characterize the selectivity of the Cdk5 inhibitor indolinone A. This lead to the identification of two additional kinases that are targeted by this compound and may provide a deeper understanding of its neuroprotective mode of action. However, several false negative results possibly due to a denatured or inactive conformation of the arrayed proteins, sound a note of caution when using protein array techniques.


Assuntos
Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/metabolismo , Análise Serial de Proteínas/métodos , Humanos , Indóis/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Musculares , Fosfoproteínas Fosfatases/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 1/metabolismo , Especificidade por Substrato
16.
Biochem J ; 405(2): 307-17, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17447891

RESUMO

Mutations in the LRRK2 (leucine-rich repeat kinase-2) gene cause late-onset PD (Parkinson's disease). LRRK2 contains leucine-rich repeats, a GTPase domain, a COR [C-terminal of Roc (Ras of complex)] domain, a kinase and a WD40 (Trp-Asp 40) motif. Little is known about how LRRK2 is regulated, what its physiological substrates are or how mutations affect LRRK2 function. Thus far LRRK2 activity has only been assessed by autophosphorylation and phosphorylation of MBP (myelin basic protein), which is catalysed rather slowly. We undertook a KESTREL (kinase substrate tracking and elucidation) screen in rat brain extracts to identify proteins that were phosphorylated by an activated PD mutant of LRRK2 (G2019S). This led to the discovery that moesin, a protein which anchors the actin cytoskeleton to the plasma membrane, is efficiently phosphorylated by LRRK2, at Thr558, a previously identified in-vivo-phosphorylation site that regulates the ability of moesin to bind actin. LRRK2 also phosphorylated ezrin and radixin, which are related to moesin, at the residue equivalent to Thr558, as well as a peptide (LRRKtide: RLGRDKYKTLRQIRQ) encompassing Thr558. We exploited these findings to determine how nine previously reported PD mutations of LRRK2 affected kinase activity. Only one of the mutations analysed, namely G2019S, stimulated kinase activity. Four mutations inhibited LRRK2 kinase activity (R1941H, I2012T, I2020T and G2385R), whereas the remainder (R1441C, R1441G, Y1699C and T2356I) did not influence activity. Therefore the manner in which LRRK2 mutations induce PD is more complex than previously imagined and is not only caused by an increase in LRRK2 kinase activity. Finally, we show that the minimum catalytically active fragment of LRRK2 requires an intact GTPase, COR and kinase domain, as well as a WD40 motif and a C-terminal tail. The results of the present study suggest that moesin, ezrin and radixin may be LRRK2 substrates, findings that have been exploited to develop the first robust quantitative assay to measure LRRK2 kinase activity.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Doença de Parkinson/genética , Proteínas Serina-Treonina Quinases/metabolismo , Treonina/metabolismo , Sequência de Aminoácidos , Animais , Proteínas do Citoesqueleto/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Proteínas de Membrana/metabolismo , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/genética , Ratos
17.
Neurobiol Aging ; 66: 97-111, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29550548

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) age-dependently cause Parkinson's disease and are associated with several inflammatory diseases. So far, the potential role of LRRK2 expression in glial cells as mediators of neuroinflammation and the influence of aging have not been investigated in viral vector-based LRRK2 animal models. In this study, we compared the effect of striatal injection of high-capacity adenoviral vectors expressing either a kinase-overactive LRRK2 with the familial G2019S mutation or a kinase-inactive LRRK2 variant in young and old C57BL/6J mice. The intrinsic adenovirus tropism guided preferentially glial transduction, and the vector design led to stable expression for at least 6 months. In histopathological analysis, young mice expressing either LRRK2 variant presented with transient vacuolization of striatal white fiber tracts accompanied by accumulation of microglial cells and astrogliosis, but inflammation resolved without permanent damage. Old mice had a stronger and prolonged inflammatory reaction and experienced permanent damage in form of partial neuron loss after 3 months exclusively in case of LRRK2_G2019S expression. The autophagic receptor p62 accumulated in cells with high levels of either LRRK2 variant, even more so in old mice. We conclude that the aging mouse brain is more susceptible to LRRK2-associated pathology, and in this model, glial LRRK2 expression significantly contributed to neuroinflammation, ultimately causing neurodegeneration.


Assuntos
Adenoviridae/genética , Envelhecimento/genética , Envelhecimento/patologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Expressão Gênica , Vetores Genéticos/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Animais , Modelos Animais de Doenças , Predisposição Genética para Doença/genética , Inflamação/etiologia , Inflamação/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Mutação , Neuroglia/metabolismo
18.
J Neurochem ; 103(6): 2401-7, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17883396

RESUMO

There is increasing evidence that aggregation of alpha-synuclein contributes to the functional and structural deterioration in the CNS of Parkinson's disease patients and transgenic animal models. alpha-Synuclein binds to various cellular proteins and aggregated alpha-synuclein species may affect their physiological function. In the present study, we used protein arrays spotted with 178 active human kinases for a large-scale analysis of the effects of recombinant alpha-synuclein on kinase activities. Incubation with globular alpha-synuclein oligomers significantly inhibited autophosphorylation of p21-activated kinase (PAK4) compared to treatment with monomeric alpha-synuclein or beta-synuclein. A concentration-dependent inhibition was also observed in a solution-based kinase assay. To show in vivo relevance, we analyzed brainstem protein extracts from alpha-synuclein (A30P) transgenic mice where accumulation of alpha-synuclein oligomers has been demonstrated. By immunoblotting using a phospho-specific antibody, we detected a significant decline in phosphorylation of LIM kinase 1, a physiological substrate for PAK4. Suppression of PAK activity by amyloid-beta oligomers has been reported in Alzheimer's disease. Thus, PAKs may represent a target for various neurotoxic protein oligomers, and signaling deficits may contribute to the behavioral defects in chronic neurodegenerative diseases.


Assuntos
Tronco Encefálico/metabolismo , Inibidores Enzimáticos/metabolismo , Neurônios/metabolismo , alfa-Sinucleína/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Feminino , Corpos de Inclusão/metabolismo , Quinases Lim/metabolismo , Substâncias Macromoleculares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Fosforilação , Polímeros/metabolismo , Análise Serial de Proteínas , alfa-Sinucleína/genética , alfa-Sinucleína/farmacologia , beta-Sinucleína/metabolismo , beta-Sinucleína/farmacologia , Quinases Ativadas por p21/antagonistas & inibidores
19.
PLoS One ; 12(9): e0184040, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28945746

RESUMO

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder worldwide and characterized by the loss of dopaminergic neurons in the patients' midbrains. Both the presence of the protein α-synuclein in intracellular protein aggregates in surviving neurons and the genetic linking of the α-synuclein encoding gene point towards a major role of α-synuclein in PD etiology. The exact pathogenic mechanisms of PD development are not entirely described to date, neither is the specific role of α-synuclein in this context. Previous studies indicate that one aspect of α-synuclein-related cellular toxicity might be direct proteasome impairment. The 20/26S proteasomal machinery is an important instrument of intracellular protein degradation. Thus, direct proteasome impairment by α-synuclein might explain or at least contribute to the formation of intracellular protein aggregates. Therefore this study investigates direct proteasomal impairment by α-synuclein both in vitro using recombinant α-synuclein and isolated proteasomes as well as in living cells. Our experiments demonstrate that the impairment of proteasome activity by α-synuclein is highly dependent upon the cellular background and origin. We show that recombinant α-synuclein oligomers and fibrils scarcely affect 20S proteasome function in vitro, neither does transient α-synuclein expression in U2OS ps 2042 (Ubi(G76V)-GFP) cells. However, stable expression of both wild-type and mutant α-synuclein in dopaminergic SH-SY5Y and PC12 cells results in a prominent impairment of the chymotrypsin-like 20S/26S proteasomal protein cleavage. Thus, our results support the idea that α-synuclein in a specific cellular environment, potentially present in dopaminergic cells, cannot be processed by the proteasome and thus contributes to a selective vulnerability of dopaminergic cells to α-synuclein pathology.


Assuntos
Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , alfa-Sinucleína/farmacologia , Animais , Western Blotting , Neurônios Dopaminérgicos/efeitos dos fármacos , Imunofluorescência , Humanos , Microscopia de Força Atômica , Células PC12 , Doença de Parkinson/etiologia , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Ratos , Proteínas Recombinantes
20.
PLoS One ; 11(11): e0165949, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812199

RESUMO

Mutations in Leucine-rich repeat kinase 2 (LRRK2) are strongly associated with familial Parkinson's disease (PD). High expression levels in immune cells suggest a role of LRRK2 in regulating the immune system. In this study, we investigated the effect of the LRRK2 (G2019S) mutation in monocytes, using a human stem cell-derived model expressing LRRK2 at endogenous levels. We discovered alterations in the differentiation pattern of LRRK2 mutant, compared to non-mutant isogenic controls, leading to accelerated monocyte production and a reduction in the non-classical CD14+CD16+ monocyte subpopulation in the LRRK2 mutant cells. LPS-treatment of the iPSC-derived monocytes significantly increased the release of pro-inflammatory cytokines, demonstrating a functional response without revealing any significant differences between the genotypes. Assessment of the migrational capacity of the differentiated monocytes revealed moderate deficits in LRRK2 mutant cells, compared to their respective controls. Our findings indicate a pivotal role of LRRK2 in hematopoietic fate decision, endorsing the involvement of the immune system in the development of PD.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Monócitos/citologia , Mutação , Diferenciação Celular/genética , Linhagem Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA