Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Invest ; 127(11): 4163-4178, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29035282

RESUMO

Age-related changes in the hematopoietic compartment are primarily attributed to cell-intrinsic alterations in hematopoietic stem cells (HSCs); however, the contribution of the aged microenvironment has not been adequately evaluated. Understanding the role of the bone marrow (BM) microenvironment in supporting HSC function may prove to be beneficial in treating age-related functional hematopoietic decline. Here, we determined that aging of endothelial cells (ECs), a critical component of the BM microenvironment, was sufficient to drive hematopoietic aging phenotypes in young HSCs. We used an ex vivo hematopoietic stem and progenitor cell/EC (HSPC/EC) coculture system as well as in vivo EC infusions following myelosuppressive injury in mice to demonstrate that aged ECs impair the repopulating activity of young HSCs and impart a myeloid bias. Conversely, young ECs restored the repopulating capacity of aged HSCs but were unable to reverse the intrinsic myeloid bias. Infusion of young, HSC-supportive BM ECs enhanced hematopoietic recovery following myelosuppressive injury and restored endogenous HSC function in aged mice. Coinfusion of young ECs augmented aged HSC engraftment and enhanced overall survival in lethally irradiated mice by mitigating damage to the BM vascular microenvironment. These data lay the groundwork for the exploration of EC therapies that can serve as adjuvant modalities to enhance HSC engraftment and accelerate hematopoietic recovery in the elderly population following myelosuppressive regimens.


Assuntos
Células Endoteliais/fisiologia , Hematopoese , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/fisiologia , Envelhecimento , Animais , Medula Óssea/irrigação sanguínea , Transplante de Medula Óssea , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/transplante , Camundongos Endogâmicos C57BL , Microvasos/patologia , Lesões Experimentais por Radiação/prevenção & controle , Tolerância a Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA