Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 89(3): 1565-1573, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28029041

RESUMO

Rapid disulfide bond formation and cleavage is an essential mechanism of life. Using large amplitude Fourier transformed alternating current voltammetry (FTacV) we have measured previously uncharacterized disulfide bond redox chemistry in Escherichia coli HypD. This protein is representative of a class of assembly proteins that play an essential role in the biosynthesis of the active site of [NiFe]-hydrogenases, a family of H2-activating enzymes. Compared to conventional electrochemical methods, the advantages of the FTacV technique are the high resolution of the faradaic signal in the higher order harmonics and the fact that a single electrochemical experiment contains all the data needed to estimate the (very fast) electron transfer rates (both rate constants ≥ 4000 s-1) and quantify the energetics of the cysteine disulfide redox-reaction (reversible potentials for both processes approximately -0.21 ± 0.01 V vs SHE at pH 6). Previously, deriving such data depended on an inefficient manual trial-and-error approach to simulation. As a highly advantageous alternative, we describe herein an automated multiparameter data optimization analysis strategy where the simulated and experimental faradaic current data are compared for both the real and imaginary components in each of the 4th to 12th harmonics after quantifying the charging current data using the time-domain response.

2.
Anal Chem ; 88(9): 4724-32, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27041344

RESUMO

Estimation of thermodynamic and kinetic parameters in electrochemical studies is usually undertaken via comparison of the experimental results with theory based on a model that mimics the experiment. The present study examines the credibility of transient d.c. and a.c. voltammetric theory-experiment comparisons for recovery of the parameters needed to model the ubiquitous mechanism when an electron transfer (E) reaction is followed by a chemical (C) step in the EC process ([Formula: see text]). The data analysis has been undertaken using optimization methods facilitated in some cases by grid computing. These techniques have been applied to the simulated (5% noise added) and experimental (reduction of trans-stilbene) voltammograms to assess the capabilities of parameter recovery of E(0) (reversible potential for the E step), k(0) (heterogeneous electron transfer rate constant at E(0)), α (charge transfer coefficient for the E step), and k(f) and k(b) (forward and backward rate constants for the C step) under different kinetic regimes. The advantages provided by the use of a.c. instead of d.c. voltammetry and data optimization methods over heuristic approaches to "experiment"-theory comparisons are discussed, as are the limitations in the efficient recovery of a unique set of parameters for the EC mechanism. In the particular experimental case examined herein, results for the protonation of the electrochemically generated stilbene dianion demonstrate that, notwithstanding significant advances in experiment and theory of voltammetric analysis, reliable recovery of the parameters for the EC mechanism with a fast chemical process remains a stiff problem.

3.
Langmuir ; 31(17): 4996-5004, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25853230

RESUMO

Commonly, significant discrepancies are reported in theoretical and experimental comparisons of dc voltammograms derived from a monolayer or close to monolayer coverage of redox-active surface-confined molecules. For example, broader-than-predicted voltammetric wave shapes are attributed to the thermodynamic or kinetic dispersion derived from distributions in reversible potentials (E(0)) and electrode kinetics (k(0)), respectively. The recent availability of experimentally estimated distributions of E(0) and k(0) values derived from the analysis of data for small numbers of surface-confined modified azurin metalloprotein molecules now allows more realistic modeling to be undertaken, assuming the same distributions apply under conditions of high surface coverage relevant to voltammetric experiments. In this work, modeling based on conventional and stochastic kinetic theory is considered, and the computationally far more efficient conventional model is shown to be equivalent to the stochastic one when large numbers of molecules are present. Perhaps unexpectedly, when experimentally determined distributions of E(0) and k(0) are input into the model, thermodynamic dispersion is found to be unimportant and only kinetic dispersion contributes significantly to the broadening of dc voltammograms. Simulations of ac voltammetric experiments lead to the conclusion that the ac method, particularly when the analysis of kinetically very sensitive higher-order harmonics is undertaken, are far more sensitive to kinetic dispersion than the dc method. ac methods are therefore concluded to provide a potentially superior strategy for addressing the inverse problem of determining the k(0) distribution that could give rise to the apparent anomalies in surface-confined voltammetry.

4.
Anal Chem ; 86(16): 8408-17, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25047798

RESUMO

Many electrode processes that approach the "reversible" (infinitely fast) limit under voltammetric conditions have been inappropriately analyzed by comparison of experimental data and theory derived from the "quasi-reversible" model. Simulations based on "reversible" and "quasi-reversible" models have been fitted to an extensive series of a.c. voltammetric experiments undertaken at macrodisk glassy carbon (GC) electrodes for oxidation of ferrocene (Fc(0/+)) in CH3CN (0.10 M (n-Bu)4NPF6) and reduction of [Ru(NH3)6](3+) and [Fe(CN)6](3-) in 1 M KCl aqueous electrolyte. The confidence with which parameters such as standard formal potential (E(0)), heterogeneous electron transfer rate constant at E(0) (k(0)), charge transfer coefficient (α), uncompensated resistance (Ru), and double layer capacitance (CDL) can be reported using the "quasi-reversible" model has been assessed using bootstrapping and parameter sweep (contour plot) techniques. Underparameterization, such as that which occurs when modeling CDL with a potential independent value, results in a less than optimal level of experiment-theory agreement. Overparameterization may improve the agreement but easily results in generation of physically meaningful but incorrect values of the recovered parameters, as is the case with the very fast Fc(0/+) and [Ru(NH3)6](3+/2+) processes. In summary, for fast electrode kinetics approaching the "reversible" limit, it is recommended that the "reversible" model be used for theory-experiment comparisons with only E(0), Ru, and CDL being quantified and a lower limit of k(0) being reported; e.g., k(0) ≥ 9 cm s(-1) for the Fc(0/+) process.

5.
Anal Chem ; 85(24): 11780-7, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24160752

RESUMO

Fully automated and computer assisted heuristic data analysis approaches have been applied to a series of AC voltammetric experiments undertaken on the [Fe(CN)6](3-/4-) process at a glassy carbon electrode in 3 M KCl aqueous electrolyte. The recovered parameters in all forms of data analysis encompass E(0) (reversible potential), k(0) (heterogeneous charge transfer rate constant at E(0)), α (charge transfer coefficient), Ru (uncompensated resistance), and Cdl (double layer capacitance). The automated method of analysis employed time domain optimization and Bayesian statistics. This and all other methods assumed the Butler-Volmer model applies for electron transfer kinetics, planar diffusion for mass transport, Ohm's Law for Ru, and a potential-independent Cdl model. Heuristic approaches utilize combinations of Fourier Transform filtering, sensitivity analysis, and simplex-based forms of optimization applied to resolved AC harmonics and rely on experimenter experience to assist in experiment-theory comparisons. Remarkable consistency of parameter evaluation was achieved, although the fully automated time domain method provided consistently higher α values than those based on frequency domain data analysis. The origin of this difference is that the implemented fully automated method requires a perfect model for the double layer capacitance. In contrast, the importance of imperfections in the double layer model is minimized when analysis is performed in the frequency domain. Substantial variation in k(0) values was found by analysis of the 10 data sets for this highly surface-sensitive pathologically variable [Fe(CN)6](3-/4-) process, but remarkably, all fit the quasi-reversible model satisfactorily.

6.
Phys Chem Chem Phys ; 15(6): 2210-21, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23223455

RESUMO

The potential-dependences of the rate constants associated with heterogeneous electron transfer predicted by the empirically based Butler-Volmer and fundamentally based Marcus-Hush formalisms are well documented for dc cyclic voltammetry. However, differences are often subtle, so, presumably on the basis of simplicity, the Butler-Volmer method is generally employed in theoretical-experimental comparisons. In this study, the ability of Large Amplitude Fourier Transform AC Cyclic Voltammetry to distinguish the difference in behaviour predicted by the two formalisms has been investigated. The focus of this investigation is on the difference in the profiles of the first to sixth harmonics, which are readily accessible when a large amplitude of the applied ac potential is employed. In particular, it is demonstrated that systematic analysis of the higher order harmonic responses in suitable kinetic regimes provides predicted deviations of Marcus-Hush from Butler-Volmer behaviour to be established from a single experiment under conditions where the background charging current is minimal.


Assuntos
Modelos Teóricos , Algoritmos , Técnicas Eletroquímicas , Transporte de Elétrons , Cinética
7.
Langmuir ; 28(25): 9864-77, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22607123

RESUMO

A detailed analysis of the cooperative two-electron transfer of surface-confined cytochrome c peroxidase (CcP) in contact with pH 6.0 phosphate buffer solution has been undertaken. This investigation is prompted by the prospect of achieving a richer understanding of this biologically important system via the employment of kinetically sensitive, but background devoid, higher harmonic components available in the large-amplitude Fourier transform ac voltammetric method. Data obtained from the conventional dc cyclic voltammetric method are also provided for comparison. Theoretical considerations based on both ac and dc approaches are presented for cases where reversible or quasi-reversible cooperative two-electron transfer involves variation in the separation of their reversible potentials, including potential inversion (as described previously for solution phase studies), and reversibility of the electrode processes. Comparison is also made with respect to the case of a simultaneous two-electron transfer process that is unlikely to occur in the physiological situation. Theoretical analysis confirms that the ac higher harmonic components provide greater sensitivity to the various mechanistic nuances that can arise in two-electron surface-confined processes. Experimentally, the ac perturbation with amplitude and frequency of 200 mV and 3.88 Hz, respectively, was employed to detect the electron transfer when CcP is confined to the surface of a graphite electrode. Simulations based on cooperative two-electron transfer with the employment of reversible potentials of 0.745 ± 0.010 V, heterogeneous electron transfer rate constants of between 3 and 10 s(-1) and charge transfer coefficients of 0.5 for both processes fitted experimental data for the fifth to eighth ac harmonics. Imperfections in theory-experiment comparison are consistent with kinetic and thermodynamic dispersion and other nonidealities not included in the theory used to model the voltammetry of surface-confined CcP.


Assuntos
Citocromo-c Peroxidase/química , Enzimas Imobilizadas/química , Análise de Fourier , Modelos Químicos , Eletroquímica , Transporte de Elétrons , Cinética , Saccharomyces cerevisiae/enzimologia , Propriedades de Superfície
8.
Langmuir ; 22(25): 10666-82, 2006 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-17129045

RESUMO

In this article, we review some of our previous work that considers the general problem of numerical simulation of the currents at microelectrodes using an adaptive finite element approach. Microelectrodes typically consist of an electrode embedded (or recessed) in an insulating material. For all such electrodes, numerical simulation is made difficult by the presence of a boundary singularity at the electrode edge (where the electrode meets the insulator), manifested by the large increase in the current density at this point, often referred to as the edge effect. Our approach to overcoming this problem has involved the derivation of an a posteriori bound on the error in the numerical approximation for the current that can be used to drive an adaptive mesh-generation algorithm, allowing calculation of the quantity of interest (the current) to within a prescribed tolerance. We illustrate the generic applicability of the approach by considering a broad range of steady-state applications of the technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA