Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Trop Med Int Health ; 28(4): 262-274, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36806816

RESUMO

OBJECTIVE: Arboviruses are emerging as a relevant threat to transfusion safety. Pathogen inactivation methods (PIMs) may reduce the risk of transmission through transfusion, as long as they meet minimum standards for effectiveness. This study aims to assess the log reduction of viral load achieved with different PIMs, according to the blood product they are used on and the arbovirus targeted. METHODS: Systematic literature review and meta-analysis. Searches were conducted in MEDLINE and Embase. The study protocol was registered in PROSPERO CRD42022312061. We selected records reporting the log reduction of viral load achieved with the main PIMs (amotosalen + UVA light [INTERCEPT], riboflavin + UV light [Mirasol], methylene blue + visible light/UVC light [THERAFLEX], solvent detergent, amustaline [INTERCEPT] and PEN110 [Inactine]), applied to any blood product (plasma, platelets, red blood cells or whole blood) and for any arbovirus. The log reduction of viral loads was assessed by obtaining the mean log reduction factor (LRF). We compared and classified the LRF of different techniques using statistical methods. RESULTS: We included 59 publications reporting LRF results in 17 arboviruses. For 13 arboviruses, including Chikungunya virus, Dengue virus, West Nile virus and Zika virus, at least one of the methods achieves adequate or optimal log reduction of viral load-mean LRF ≥4. The LRF achieved with riboflavin + UV light is inferior to the rest of the techniques, both overall and specifically for plasma, platelets preserved in platelet additive solution (PAS)/plasma, and red blood cells/whole blood. The LRF achieved using Mirasol is also lower for inactivating Chikungunya virus, Dengue virus and Zika virus. For West Nile virus, we found no significant differences. In plasma, the method that achieves the highest LRF is solvent/detergent; in platelets, THERAFLEX and INTERCEPT; and in red blood cells/whole blood, PEN110 (Inactine). CONCLUSION: Not all PIMs achieve the same LRF, nor is this equivalent between the different arboviruses or blood products. Overall, the LRFs achieved using riboflavin + UV light (Mirasol) are inferior to those achieved with the rest of the PIMs. Regarding the others, LRFs vary by arbovirus and blood product. In light of the threat of different arboviruses, blood establishments should have already validated PIMs and be logistically prepared to implement these techniques quickly.


Assuntos
Arbovírus , Infecção por Zika virus , Zika virus , Humanos , Detergentes , Poliaminas , Riboflavina
2.
PLoS Negl Trop Dis ; 16(10): e0010843, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36201547

RESUMO

BACKGROUND: The detection of the first cases of transfusion-transmitted West Nile virus in 2002 posed a new challenge for transfusion safety. Institutions like the World Health Organization have stated that blood transfusion centers need to know the epidemiology of the different emerging infectious agents and their impact on blood transfusion. The aim of the study is to review the published cases of arbovirus transmission through transfusion of blood or blood components and to analyze their main clinical and epidemiological characteristics. MATERIAL AND METHODS: Systematic literature searches were conducted in MEDLINE, Embase and Scopus. Pairs of review authors selected a variety of scientific publications reporting cases of transfusion-transmitted arboviruses. Main clinical and epidemiological characteristics were reviewed of the cases described. The study protocol was registered in PROSPERO CRD42021270355. RESULTS: A total of 74 cases of transfusion-transmitted infections were identified from 10 arboviruses: West Nile virus (n = 42), dengue virus (n = 18), Zika virus (n = 3), yellow fever vaccine virus (n = 3), tick-borne encephalitis virus (n = 2), Japanese encephalitis virus (n = 2), Powassan virus (n = 1), St. Louis encephalitis virus (n = 1), Ross River virus (n = 1) and Colorado tick fever virus (n = 1). The blood component most commonly involved was red blood cells (N = 35, 47.3%; 95% confidence interval [CI] 35.9% to 58.7%). In 54.1% (N = 40; 95% CI: 42.7%-65.47%) of the cases, the recipient was immunosuppressed. Transmission resulted in death in 18.9% (N = 14; 95% CI: 10.0%-27.8%) of the recipients. In addition, 18 additional arboviruses were identified with a potential threat to transfusion safety. DISCUSSION: In the last 20 years, the number of published cases of transfusion-transmitted arboviruses increased notably, implicating new arboviruses. In addition, a significant number of arboviruses that may pose a threat to transfusion safety were detected. In the coming years, it is expected that transmission of arboviruses will continue to expand globally. It is therefore essential that all responsible agencies prepare for this potential threat to transfusion safety.


Assuntos
Infecções por Arbovirus , Arbovírus , Vírus do Nilo Ocidental , Vacina contra Febre Amarela , Infecção por Zika virus , Zika virus , Humanos , Transfusão de Sangue , Infecção por Zika virus/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA