Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 326(2): H317-H333, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038719

RESUMO

Mitochondria are cellular organelles critical for ATP production and are particularly relevant to cardiovascular diseases including heart failure, atherosclerosis, ischemia-reperfusion injury, and cardiomyopathies. With advancing age, even in the absence of clinical disease, mitochondrial homeostasis becomes disrupted (e.g., redox balance, mitochondrial DNA damage, oxidative metabolism, and mitochondrial quality control). Mitochondrial dysregulation leads to the accumulation of damaged and dysfunctional mitochondria, producing excessive reactive oxygen species and perpetuating mitochondrial dysfunction. In addition, mitochondrial DNA, cardiolipin, and N-formyl peptides are potent activators of cell-intrinsic and -extrinsic inflammatory pathways. These age-related mitochondrial changes contribute to the development of cardiovascular diseases. This review covers the impact of aging on mitochondria and links these mechanisms to therapeutic implications for age-associated cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Humanos , Mitocôndrias/metabolismo , DNA Mitocondrial/metabolismo
2.
J Physiol ; 600(21): 4633-4651, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36111692

RESUMO

Vascular dysfunction: develops progressively with ageing; increases the risk of cardiovascular diseases (CVD); and is characterized by endothelial dysfunction and arterial stiffening, which are primarily mediated by superoxide-driven oxidative stress and consequently reduced nitric oxide (NO) bioavailability and arterial structural changes. Interventions initiated before vascular dysfunction manifests may have more promise for reducing CVD risk than interventions targeting established dysfunction. Gut microbiome-derived trimethylamine N-oxide (TMAO) induces vascular dysfunction, is associated with higher CV risk, and can be suppressed by 3,3-dimethyl-1-butanol (DMB). We investigated whether DMB supplementation could prevent age-related vascular dysfunction in C57BL/6N mice when initiated prior to development of dysfunction. Mice received drinking water with 1% DMB or normal drinking water (control) from midlife (18 months) until being studied at 21, 24 or 27 months of age, and were compared to young adult (5 month) mice. Endothelial function [carotid artery endothelium-dependent dilatation (EDD) to acetylcholine; pressure myography] progressively declined with age in control mice, which was fully prevented by DMB via higher NO-mediated EDD and lower superoxide-related suppression of EDD (normalization of EDD with the superoxide dismutase mimetic TEMPOL). In vivo aortic stiffness (pulse wave velocity) increased progressively with age in controls, but DMB attenuated stiffening by ∼ 70%, probably due to preservation of endothelial function, as DMB did not affect aortic intrinsic mechanical (structural) stiffness (stress-strain testing) nor adventitial abundance of the arterial structural protein collagen. Our findings indicate that long-term DMB supplementation prevents/attenuates age-related vascular dysfunction, and therefore has potential for translation to humans for reducing CV risk with ageing. KEY POINTS: Vascular dysfunction, characterized by endothelial dysfunction and arterial stiffening, develops progressively with ageing and increases the risk of cardiovascular diseases (CVD). Interventions aimed at preventing the development of CV risk factors have more potential for preventing CVD relative to those aimed at reversing established dysfunction. The gut microbiome-derived metabolite trimethylamine N-oxide (TMAO) induces vascular dysfunction, is associated with higher CV risk and can be suppressed by supplementation with 3,3-dimethyl-1-butanol (DMB). In mice, DMB prevented the development of endothelial dysfunction and delayed and attenuated in vivo arterial stiffening with ageing when supplementation was initiated in midlife, prior to the development of dysfunction. DMB supplementation or other TMAO-suppressing interventions have potential for translation to humans for reducing CV risk with ageing.


Assuntos
Doenças Cardiovasculares , Água Potável , Doenças Vasculares , Rigidez Vascular , Camundongos , Humanos , Animais , Superóxidos/metabolismo , Vasodilatação , Análise de Onda de Pulso , Endotélio Vascular/metabolismo , Butanóis/metabolismo , Água Potável/metabolismo , Camundongos Endogâmicos C57BL , Envelhecimento/metabolismo , Doenças Vasculares/metabolismo , Óxido Nítrico/metabolismo
3.
J Physiol ; 599(3): 911-925, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33103241

RESUMO

KEY POINTS: The results of the present study establish the temporal pattern of age-related vascular dysfunction across the adult lifespan in sedentary mice consuming a non-Western diet, and the underlying mechanisms The results demonstrate that consuming a Western diet accelerates and exacerbates vascular ageing across the lifespan in sedentary mice They also show that lifelong voluntary aerobic exercise has remarkable protective effects on vascular function throughout the lifespan, in the setting of ageing alone, as well as ageing compounded by Western diet consumption Overall, the results indicate that amelioration of mitochondrial oxidative stress and inflammation are key mechanisms underlying the voluntary aerobic exercise-associated preservation of vascular function across the lifespan in both the presence and absence of a Western dietary pattern ABSTRACT: Advancing age is the major risk factor for cardiovascular diseases, driven largely by vascular endothelial dysfunction (impaired endothelium-dependent dilatation, EDD) and aortic stiffening (increased aortic pulse wave velocity, aPWV). In humans, vascular ageing occurs in the presence of differences in diet and physical activity, but the interactive effects of these factors are unknown. We assessed carotid artery EDD and aPWV across the lifespan in mice consuming standard (normal) low-fat chow (NC) or a high-fat/high-sucrose Western diet (WD) in the absence (sedentary, SED) or presence (voluntary wheel running, VWR) of aerobic exercise. Ageing impaired nitric oxide-mediated EDD (peak EDD 88 ± 12% 6 months P = 0.003 vs. 59 ± 9% 27 months NC-SED), which was accelerated by WD (60 ± 18% 6 months WD-SED). In NC mice, aPWV increased 32% with age (423 ± 13 cm/s at 24 months P < 0.001 vs. 321 ± 12 cm/s at 6 months) and absolute values were an additional ∼10% higher at any age in WD mice (P = 0.042 vs. NC-SED). Increases in aPWV with age in NC and WD mice were associated with 30-65% increases in aortic intrinsic wall stiffness (6 vs. 19-27 months, P = 0.007). Lifelong aerobic exercise prevented age- and WD-related vascular dysfunction across the lifespan, and this protection appeared to be mediated by mitigation of vascular mitochondrial oxidative stress and inflammation. Our results depict the temporal impairment of vascular function over the lifespan in mice, acceleration and exacerbation of that dysfunction with WD consumption, the remarkable protective effects of voluntary aerobic exercise, and the underlying mechanisms.


Assuntos
Dieta Ocidental , Rigidez Vascular , Animais , Dieta Ocidental/efeitos adversos , Endotélio Vascular/metabolismo , Inflamação/metabolismo , Camundongos , Atividade Motora , Estresse Oxidativo , Análise de Onda de Pulso
4.
Exp Physiol ; 106(4): 820-827, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33559926

RESUMO

NEW FINDINGS: What is the central question of this study? Does exercise training modify tissue iron storage in adults with obesity? What is the main finding and its importance? Twelve weeks of moderate-intensity exercise or high-intensity interval training lowered whole-body iron stores, decreased the abundance of the key iron storage protein in skeletal muscle (ferritin) and tended to lower hepatic iron content. These findings show that exercise training can reduce tissue iron storage in adults with obesity and might have important implications for obese individuals with dysregulated iron homeostasis. ABSTRACT: The regulation of iron storage is crucial to human health, because both excess and deficient iron storage have adverse consequences. Recent studies suggest altered iron storage in adults with obesity, with increased iron accumulation in their liver and skeletal muscle. Exercise training increases iron use for processes such as red blood cell production and can lower whole-body iron stores in humans. However, the effects of exercise training on liver and muscle iron stores in adults with obesity have not been assessed. The aim of this study was to determine the effects of 12 weeks of exercise training on whole-body iron stores, liver iron content and the abundance of ferritin (the key iron storage protein) in skeletal muscle in adults with obesity. Twenty-two inactive adults (11 women and 11 men; age, 31 ± 6 years; body mass index, 33 ± 3 kg/m2 ) completed 12 weeks (four sessions/week) of either moderate-intensity continuous training (MICT; 45 min at 70% of maximal heart rate; n = 11) or high-intensity interval training (HIIT; 10 × 1 min at 90% of maximal heart rate, interspersed with 1 min active recovery; n = 11). Whole-body iron stores were lower after training, as indicated by decreased plasma concentrations of ferritin (P = 3 × 10-5 ) and hepcidin (P = 0.02), without any change in C-reactive protein. Hepatic R2*, an index of liver iron content, was 6% lower after training (P = 0.06). Training reduced the skeletal muscle abundance of ferritin by 10% (P = 0.03), suggesting lower muscle iron storage. Interestingly, these adaptations were similar in MICT and HIIT groups. Our findings indicate that exercise training decreased iron storage in adults with obesity, which might have important implications for obese individuals with dysregulated iron homeostasis.


Assuntos
Treinamento Intervalado de Alta Intensidade , Ferro , Adaptação Fisiológica , Adulto , Exercício Físico/fisiologia , Feminino , Humanos , Masculino , Obesidade/metabolismo
5.
Clin Sci (Lond) ; 134(12): 1491-1519, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32584404

RESUMO

Cardiovascular diseases (CVD) are the leading cause of death worldwide and aging is the primary risk factor for CVD. The development of vascular dysfunction, including endothelial dysfunction and stiffening of the large elastic arteries (i.e., the aorta and carotid arteries), contribute importantly to the age-related increase in CVD risk. Vascular aging is driven in large part by oxidative stress, which reduces bioavailability of nitric oxide and promotes alterations in the extracellular matrix. A key upstream driver of vascular oxidative stress is age-associated mitochondrial dysfunction. This review will focus on vascular mitochondria, mitochondrial dysregulation and mitochondrial reactive oxygen species (ROS) production and discuss current evidence for prevention and treatment of vascular aging via lifestyle and pharmacological strategies that improve mitochondrial health. We will also identify promising areas and important considerations ('research gaps') for future investigation.


Assuntos
Envelhecimento/fisiologia , Vasos Sanguíneos/fisiologia , Mitocôndrias/metabolismo , Animais , Vasos Sanguíneos/fisiopatologia , Humanos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Rigidez Vascular
6.
Exp Physiol ; 105(11): 1808-1814, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32888323

RESUMO

NEW FINDINGS: What is the central question of this study? Obesity is associated with complex perturbations to iron homeostasis: is plasma ferritin concentration (a biomarker of whole-body iron stores) related to the abundance of ferritin (the key tissue iron storage protein) in skeletal muscle in adults with obesity? What is the main finding and its importance? Plasma ferritin concentration was tightly correlated with the abundance of ferritin in skeletal muscle, and this relationship persisted when accounting for sex, age, body mass index and plasma C-reactive protein concentration. Our findings suggest that skeletal muscle may be an important iron store. ABSTRACT: Obesity is associated with complex perturbations to whole-body and tissue iron homeostasis. Recent evidence suggests a potentially important influence of iron storage in skeletal muscle on whole-body iron homeostasis, but this association is not clearly resolved. The primary aim of this study was to assess the relationship between whole-body and skeletal muscle iron stores by measuring the abundance of the key iron storage (ferritin) and import (transferrin receptor) proteins in skeletal muscle, as well as markers of whole-body iron homeostasis in men (n = 19) and women (n = 43) with obesity. Plasma ferritin concentration (a marker of whole-body iron stores) was highly correlated with muscle ferritin abundance (r = 0.77, P = 2 × 10-13 ) and negatively associated with muscle transferrin receptor abundance (r = -0.76, P = 1 × 10-12 ). These relationships persisted when accounting for sex, age, BMI and plasma C-reactive protein concentration. In parallel with higher whole-body iron stores in our male versus female participants, men had 2.2-fold higher muscle ferritin abundance (P = 1 × 10-4 ) compared with women. In accordance with lower muscle iron storage, women had 2.7-fold higher transferrin receptor abundance (P = 7 × 10-10 ) compared with men. We conclude that muscle iron storage and import proteins are tightly and independently related to plasma ferritin concentration in adults with obesity, suggesting that skeletal muscle may be an underappreciated iron store.


Assuntos
Ferritinas , Obesidade , Adulto , Índice de Massa Corporal , Feminino , Humanos , Ferro , Masculino , Músculo Esquelético/metabolismo
7.
J Physiol ; 597(9): 2361-2378, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30714619

RESUMO

KEY POINTS: Age-related arterial dysfunction, characterized by oxidative stress- and inflammation-mediated endothelial dysfunction and arterial stiffening, is the primary risk factor for cardiovascular diseases. To investigate whether age-related changes in the gut microbiome may mediate arterial dysfunction, we suppressed gut microbiota in young and old mice with a cocktail of broad-spectrum, poorly-absorbed antibiotics in drinking water for 3-4 weeks. In old mice, antibiotic treatment reversed endothelial dysfunction and arterial stiffening and attenuated vascular oxidative stress and inflammation. To provide insight into age-related changes in gut microbiota that may underlie these observations, we show that ageing altered the abundance of microbial taxa associated with gut dysbiosis and increased plasma levels of the adverse gut-derived metabolite trimethylamine N-oxide. The results of the present study provide the first proof-of-concept evidence that the gut microbiome is an important mediator of age-related arterial dysfunction and therefore may be a promising therapeutic target for preserving arterial function with ageing, thereby reducing the risk of cardiovascular diseases. ABSTRACT: Oxidative stress-mediated arterial dysfunction (e.g. endothelial dysfunction and large elastic artery stiffening) is the primary mechanism driving age-related cardiovascular diseases. Accumulating evidence suggests the gut microbiome modulates host physiology because dysregulation ('gut dysbiosis') has systemic consequences, including promotion of oxidative stress. The present study aimed to determine whether the gut microbiome modulates arterial function with ageing. We measured arterial function in young and older mice after 3-4 weeks of treatment with broad-spectrum, poorly-absorbed antibiotics to suppress the gut microbiome. To identify potential mechanistic links between the gut microbiome and age-related arterial dysfunction, we sequenced microbiota from young and older mice and measured plasma levels of the adverse gut-derived metabolite trimethylamine N-oxide (TMAO). In old mice, antibiotics reversed endothelial dysfunction [area-under-the-curve carotid artery dilatation to acetylcholine in young: 345 ± 16 AU vs. old control (OC): 220 ± 34 AU, P < 0.01; vs. old antibiotic-treated (OA): 334 ± 15 AU; P < 0.01 vs. OC] and arterial stiffening (aortic pulse wave velocity in young: 3.62 ± 0.15 m  s-1  vs. OC: 4.43 ± 0.38 m  s-1 ; vs. OA: 3.52 ± 0.35 m  s-1 ; P = 0.03). These improvements were accompanied by lower oxidative stress and greater antioxidant enzyme expression. Ageing altered the abundance of gut microbial taxa associated with gut dysbiosis. Lastly, plasma TMAO was higher with ageing (young: 2.6 ± 0.4 µmol  L-1   vs. OC: 7.2 ± 2.0 µmol  L-1 ; P < 0.0001) and suppressed by antibiotic treatment (OA: 1.2 ± 0.2 µmol  L-1 ; P < 0.0001 vs. OC). The results of the present study provide the first evidence for the gut microbiome being an important mediator of age-related arterial dysfunction and oxidative stress and suggest that therapeutic strategies targeting gut microbiome health may hold promise for preserving arterial function and reducing cardiovascular risk with ageing in humans.


Assuntos
Envelhecimento/fisiologia , Antibacterianos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Rigidez Vascular/efeitos dos fármacos , Envelhecimento/patologia , Animais , Artérias Carótidas/crescimento & desenvolvimento , Artérias Carótidas/metabolismo , Artérias Carótidas/fisiologia , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Masculino , Metilaminas/sangue , Camundongos , Camundongos Endogâmicos C57BL , Vasodilatação/efeitos dos fármacos
8.
Exp Physiol ; 103(11): 1443-1447, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30178895

RESUMO

NEW FINDINGS: What is the central question of this study? Do obese women with relatively high whole-body iron stores exhibit elevated in vivo rates of fatty acid (FA) release from adipose tissue compared with a well-matched cohort of obese women with relatively low iron stores? What is the main finding and its importance? Obese women with high plasma [ferritin] (a marker of whole-body iron stores) had greater FA mobilization, lipolytic activation in adipose tissue and insulin resistance (IR) compared with obese women with lower plasma [ferritin]. Given that elevated FA mobilization is intimately linked with the development of IR, these findings suggest that elevated iron stores might contribute to IR in obesity by increasing systemic FA availability. ABSTRACT: High rates of fatty acid (FA) mobilization from adipose tissue are associated with insulin resistance (IR) in obesity. In vitro evidence suggests that iron stimulates lipolysis in adipocytes, but whether iron is related to in vivo FA mobilization is unknown. We hypothesized that plasma ferritin concentration ([ferritin]), a marker of body iron stores, would be positively associated with FA mobilization. We measured [ferritin], the rate of appearance of FA in the systemic circulation (FA Ra; stable isotope dilution), key adipose tissue lipolytic proteins and IR (hyperinsulinaemic-euglycaemic clamp) in 20 obese, premenopausal women. [Ferritin] was correlated with FA Ra (r = 0.65; P = 0.002) and IR (r = 0.57; P = 0.008); these relationships remained significant after controlling for body mass index and plasma [C-reactive protein] (a marker of systemic inflammation) in multiple regression analyses. We then stratified subjects into tertiles based on [ferritin] to compare subjects with 'High-ferritin' versus 'Low-ferritin'. Plasma [hepcidin] was more than fivefold greater (P < 0.05) in the High-ferritin versus Low-ferritin group, but there was no difference in plasma [C-reactive protein] between groups, indicating that the large difference in plasma [ferritin] reflects a difference in iron stores, not systemic inflammation. We found that FA Ra, adipose protein abundance of hormone-sensitive lipase and adipose triglyceride lipase, and IR were significantly greater in subjects with High-ferritin versus Low-ferritin (all P < 0.05). These data provide the first evidence linking iron and in vivo FA mobilization and suggest that elevated iron stores might contribute to IR in obesity by increasing systemic FA availability.


Assuntos
Ácidos Graxos/sangue , Ferritinas/sangue , Resistência à Insulina/fisiologia , Obesidade/sangue , Adulto , Índice de Massa Corporal , Proteína C-Reativa/metabolismo , Feminino , Técnica Clamp de Glucose , Humanos , Pessoa de Meia-Idade , Adulto Jovem
9.
Physiology (Bethesda) ; 29(4): 250-64, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24985329

RESUMO

Endothelial dysfunction develops with age and increases the risk of age-associated vascular disorders. Nitric oxide insufficiency, oxidative stress, and chronic low-grade inflammation, induced by upregulation of adverse cellular signaling processes and imbalances in stress resistance pathways, mediate endothelial dysfunction with aging. Healthy lifestyle behaviors preserve endothelial function with aging by inhibiting these mechanisms, and novel nutraceutical compounds that favorably modulate these pathways hold promise as a complementary approach for preserving endothelial health.


Assuntos
Envelhecimento/fisiologia , Artérias/fisiologia , Endotélio Vascular/fisiologia , Animais , Artérias/fisiopatologia , Endotélio Vascular/fisiopatologia , Humanos , Estilo de Vida , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , Doenças Vasculares/fisiopatologia , Doenças Vasculares/prevenção & controle
10.
J Physiol ; 592(12): 2549-61, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24665093

RESUMO

Age-related arterial endothelial dysfunction, a key antecedent of the development of cardiovascular disease (CVD), is largely caused by a reduction in nitric oxide (NO) bioavailability as a consequence of oxidative stress. Mitochondria are a major source and target of vascular oxidative stress when dysregulated. Mitochondrial dysregulation is associated with primary ageing, but its role in age-related endothelial dysfunction is unknown. Our aim was to determine the efficacy of a mitochondria-targeted antioxidant, MitoQ, in ameliorating vascular endothelial dysfunction in old mice. Ex vivo carotid artery endothelium-dependent dilation (EDD) to increasing doses of acetylcholine was impaired by ∼30% in old (∼27 months) compared with young (∼8 months) mice as a result of reduced NO bioavailability (P < 0.05). Acute (ex vivo) and chronic (4 weeks in drinking water) administration of MitoQ completely restored EDD in older mice by improving NO bioavailability. There were no effects of age or MitoQ on endothelium-independent dilation to sodium nitroprusside. The improvements in endothelial function with MitoQ supplementation were associated with the normalization of age-related increases in total and mitochondria-derived arterial superoxide production and oxidative stress (nitrotyrosine abundance), as well as with increases in markers of vascular mitochondrial health, including antioxidant status. MitoQ also reversed the age-related increase in endothelial susceptibility to acute mitochondrial damage (rotenone-induced impairment in EDD). Our results suggest that mitochondria-derived oxidative stress is an important mechanism underlying the development of endothelial dysfunction in primary ageing. Mitochondria-targeted antioxidants such as MitoQ represent a promising novel strategy for the preservation of vascular endothelial function with advancing age and the prevention of age-related CVD.


Assuntos
Envelhecimento/fisiologia , Antioxidantes/farmacologia , Aorta Torácica/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Ubiquinona/análogos & derivados , Animais , Antioxidantes/uso terapêutico , Aorta Torácica/fisiologia , Endotélio Vascular/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Compostos Organofosforados/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Superóxidos/metabolismo , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Doenças Vasculares/tratamento farmacológico , Doenças Vasculares/metabolismo , Doenças Vasculares/fisiopatologia , Vasodilatação/efeitos dos fármacos
11.
Geroscience ; 46(3): 3311-3324, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38265578

RESUMO

Declines in physiological function with aging are strongly linked to age-related diseases. Lifelong voluntary aerobic exercise (LVAE) preserves physiological function with aging, possibly by increasing cellular quality control processes, but the circulating molecular transducers mediating these processes are incompletely understood. The plasma metabolome may predict biological aging and is impacted by a single bout of aerobic exercise. Here, we conducted an ancillary analysis using plasma samples, and physiological function data, from previously reported studies of LVAE in male C57BL/6N mice randomized to LVAE (wheel running) or sedentary (SED) (n = 8-9/group) to determine if LVAE alters the plasma metabolome and whether these changes correlated with preservation of physiological function with LVAE. Physical function (grip strength, coordination, and endurance) was assessed at 3 and 18 months of age; vascular endothelial function and the plasma metabolome were assessed at 19 months. Physical function was preserved (%decline; mean ± SEM) with LVAE vs SED (all p < 0.05)-grip strength, 0.4 ± 1.7% vs 12 ± 4.0%; coordination, 10 ± 4% vs 73 ± 10%; endurance, 1 ± 15% vs 61 ± 5%. Vascular endothelial function with LVAE (88.2 ± 2.0%) was higher than SED (79.1 ± 2.5%; p = 0.03) and similar to the young controls (91.4 ± 2.9%). Fifteen metabolites were different with LVAE compared to SED (FDR < 0.05) and correlated with the preservation of physiological function. Plasma spermidine, a polyamine that increases cellular quality control (e.g., autophagy), correlated with all assessed physiological indices. Autophagy (LC3A/B abundance) was higher in LVAE skeletal muscle compared to SED (p < 0.01) and inversely correlated with plasma spermidine (r = - 0.5297; p = 0.054). These findings provide novel insight into the circulating molecular transducers by which LVAE may preserve physiological function with aging.


Assuntos
Atividade Motora , Espermidina , Animais , Masculino , Camundongos , Envelhecimento/fisiologia , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Espermidina/metabolismo
12.
Biomedicines ; 12(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275364

RESUMO

Aortic aneurysms are responsible for significant morbidity and mortality. Despite their clinical significance, there remain critical knowledge gaps in the pathogenesis of aneurysm disease and the mechanisms involved in aortic rupture. Recent studies have drawn attention to the role of reactive oxygen species (ROS) and their down-stream effectors in chronic cardiovascular diseases and specifically in the pathogenesis of aortic aneurysm formation. This review will discuss current mechanisms of ROS in mediating aortic aneurysms, the failure of endogenous antioxidant systems in chronic vascular diseases, and their relation to the development of aortic aneurysms.

13.
Ethics Hum Res ; 44(4): 14-25, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35802793

RESUMO

We sought to investigate the experiences of researchers in existing active-control trials in acute ischemic stroke comparing investigational therapy to tissue plasminogen activator (tPA) in order to identify the approaches and challenges in obtaining informed consent. Out of 401 articles evaluated, 14 trials met inclusion criteria. Trial representatives were contacted to complete a survey concerning the consent process. None of the 14 trials published materials related to the informed consent process. Trials with 75% to 100% of patients directly consented had shorter door-to-treatment (DTT) times than trials that directly consented less than 50% of patients. Trials that had translators available (for recruiting participants who were not native speakers in the local language) and translated consent documents had longer DTT times. The study findings suggest that differences in the standards of informed consent internationally may allow more patients with moderate strokes to provide direct consent without delaying DTT time. Future trials should emphasize transparency to the public and scientific community in the informed consent process.


Assuntos
Consentimento Livre e Esclarecido , AVC Isquêmico , Ensaios Clínicos como Assunto , Termos de Consentimento , Humanos , Consentimento Livre e Esclarecido/ética , AVC Isquêmico/terapia , Ativador de Plasminogênio Tecidual/uso terapêutico
14.
Exp Gerontol ; 157: 111632, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822971

RESUMO

It is unknown if consumption of a Western diet (WD; high-fat/sucrose), versus a non-WD (healthy diet), accelerates declines in physical function over the adult lifespan, and whether regular voluntary activity attenuates age- and WD-associated declines in function. Accordingly, we studied 4 cohorts of mice that consumed either normal chow [NC] or WD with or without access (sedentary, Sed) to voluntary wheel running [VWR] beginning at 3 mo of age. We assessed coordination, grip strength and endurance every 6 mo throughout life, and measured skeletal muscle mass and inflammation at 3 pre-determined ages (6-7, 13-14 and 19-20 mo). Age-related declines (% change 3-18 mo) in physical function were accelerated in WD-Sed versus NC-Sed (coordination: +47 ± 5%; grip strength: +18 ± 2%; endurance: +32 ± 5%; all p < 0.05). VWR attenuated declines in physical function within diet group (coordination: -31 ± 3% with WD-VWR; -18 ± 2% with NC-VWR; grip strength: -26 ± 2% with WD-VWR; -24 ± 2% with NC-VWR; endurance: -48 ± 4% with WD-VWR; -23 ± 6% with NC-VWR; all p < 0.05). Skeletal muscle mass loss and pro-inflammatory cytokine abundance were exacerbated by WD throughout life (mass: NC-Sed [-]7-28%, WD-Sed [-]17-40%; inflammation: NC-Sed [+]40-65%, WD-Sed [+]40-84%, all p < 0.05 versus NC-Sed), and attenuated by VWR (mass: NC-VWR, [-]0-10%, WD-VWR [-]0-10%; inflammation: NC-VWR [+]0-30%, WD-VWR [+]0-42%, all p < 0.05 versus diet-matched Sed group). Our results depict the temporal impairment of physical function over the lifespan in mice, acceleration of dysfunction with WD, the protective effects of voluntary exercise, and the potential associations with skeletal muscle mass and inflammation.


Assuntos
Dieta Ocidental , Condicionamento Físico Animal , Animais , Dieta Ocidental/efeitos adversos , Inflamação , Camundongos , Atividade Motora/fisiologia , Músculo Esquelético , Condicionamento Físico Animal/fisiologia
15.
J Appl Physiol (1985) ; 133(4): 798-813, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35952350

RESUMO

Consumption of a Western-style diet (WD; high fat, high sugar, low fiber) is associated with impaired vascular function and increased risk of cardiovascular diseases (CVD), which could be mediated partly by increased circulating concentrations of the gut microbiome-derived metabolite trimethylamine N-oxide (TMAO). We investigated if suppression of TMAO with 3,3-dimethyl-1-butanol (DMB; inhibitor of microbial TMA lyase) in mice could prevent: 1) WD-induced vascular endothelial dysfunction and aortic stiffening and 2) WD-induced reductions in endurance exercise tolerance and increases in frailty, as both are linked to WD, vascular dysfunction, and increased CVD risk. C57BL/6N mice were fed standard chow or WD (41% fat, ∼25% sugar, 4% fiber) for 5 mo beginning at ∼2 mo of age. Within each diet, mice randomly received (n = 11-13/group) normal drinking water (control) or 1% DMB in drinking water for the last 8 wk (from 5 to 7 mo of age). Plasma TMAO was increased in WD-fed mice but suppressed by DMB. WD induced endothelial dysfunction, assessed as carotid artery endothelium-dependent dilation to acetylcholine, and progressive increases in aortic stiffness (measured serially in vivo as pulse wave velocity), both of which were fully prevented by supplementation with DMB. Endurance exercise tolerance, assessed as time to fatigue on a rotarod test, was impaired in WD-fed mice but partially recovered by DMB. Lastly, WD-induced increases in frailty (31-point index) were prevented by DMB. Our findings indicate DMB or other TMAO-lowering therapies may be promising for mitigating the adverse effects of WD on physiological function, and thereby reducing risk of chronic diseases.NEW & NOTEWORTHY We provide novel evidence that increased circulating concentrations of the gut microbiome-derived metabolite trimethylamine N-oxide (TMAO) contribute to vascular dysfunction associated with consumption of a Western-style diet and that this dysfunction can be prevented by suppressing TMAO with DMB, thereby supporting translation of this compound to humans. Furthermore, to our knowledge, we present the first evidence of the role of TMAO in mediating impairments in endurance exercise tolerance and increased frailty in any context.


Assuntos
Água Potável , Fragilidade , Liases , Doenças Vasculares , Acetilcolina , Animais , Dieta Ocidental/efeitos adversos , Humanos , Metilaminas , Camundongos , Camundongos Endogâmicos C57BL , Análise de Onda de Pulso , Açúcares , Doenças Vasculares/etiologia , Doenças Vasculares/prevenção & controle
16.
Geroscience ; 43(1): 423-432, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32529594

RESUMO

Aortic stiffening, assessed as pulse-wave velocity (PWV), increases with age and is an important antecedent to, and independent predictor of, cardiovascular diseases (CVD) and other clinical disorders of aging. Aerobic exercise promotes lower levels of aortic stiffness in older adults, but the underlying mechanisms are incompletely understood, largely due to inherent challenges of mechanistic studies of large elastic arteries in humans. Voluntary wheel running (VWR) is distinct among experimental animal exercise paradigms in that it allows investigation of the physiologic effects of aerobic training without potential confounding influences of aversive molecular signaling related to forced exercise. In this study, we investigated whether VWR in mice may be a suitable model for mechanistic studies (i.e., "reverse translation") of the beneficial effects of exercise on arterial stiffness in humans. We found that 10 weeks of VWR in old mice (~ 28 months) reversed age-related elevations in aortic PWV assessed in vivo (Old VWR: 369 ± 19 vs. old sedentary: 439 ± 20 cm/s, P < 0.05). The de-stiffening effects of VWR were accompanied by normalization of age-related increases in ex vivo mechanical stiffness of aortic segments and aortic accumulation of collagen-I and advanced glycation end products, as well as lower levels of aortic superoxide and nitrotyrosine. Our results suggest that late-life VWR in mice recapitulates the aortic de-stiffening effects of exercise in humans and indicates important mechanistic roles for decreased oxidative stress and extracellular matrix remodeling. Therefore, VWR is a suitable model for further study of the mechanisms underlying beneficial effects of exercise on arterial stiffness.


Assuntos
Rigidez Vascular , Animais , Aorta , Artérias , Camundongos , Atividade Motora , Análise de Onda de Pulso
17.
Geroscience ; 43(1): 377-394, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862276

RESUMO

Aging is associated with declines in cognitive performance, which are mediated in part by neuroinflammation, characterized by astrocyte activation and higher levels of pro-inflammatory cytokines; however, the upstream drivers are unknown. We investigated the potential role of the gut microbiome-derived metabolite trimethylamine N-oxide (TMAO) in modulating neuroinflammation and cognitive function with aging. Study 1: In middle-aged and older humans (65 ± 7 years), plasma TMAO levels were inversely related to performance on NIH Toolbox Cognition Battery tests of memory and fluid cognition (both r2 = 0.07, p < 0.05). Study 2: In mice, TMAO concentrations in plasma and the brain increased in parallel with aging (r2 = 0.60), suggesting TMAO crosses the blood-brain barrier. The greater TMAO concentrations in old mice (27 months) were associated with higher brain pro-inflammatory cytokines and markers of astrocyte activation vs. young adult mice (6 months). Study 3: To determine if TMAO independently induces an "aging-like" decline in cognitive function, young mice (6 months) were supplemented with TMAO in chow for 6 months. Compared with controls, TMAO-supplemented mice performed worse on the novel object recognition test, indicating impaired memory and learning, and had increased neuroinflammation and markers of astrocyte activation. Study 4: Human astrocytes cultured with TMAO vs. control media exhibited changes in cellular morphology and protein markers consistent with astrocyte activation, indicating TMAO directly acts on these cells. Our results provide translational insight into a novel pathway that modulates neuroinflammation and cognitive function with aging, and suggest that TMAO might be a promising target for prevention of neuroinflammation and cognitive decline with aging.


Assuntos
Microbioma Gastrointestinal , Envelhecimento , Animais , Cognição , Metilaminas , Camundongos
20.
Hypertension ; 76(1): 101-112, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32520619

RESUMO

Age-related vascular endothelial dysfunction is a major antecedent to cardiovascular diseases. We investigated whether increased circulating levels of the gut microbiome-generated metabolite trimethylamine-N-oxide induces endothelial dysfunction with aging. In healthy humans, plasma trimethylamine-N-oxide was higher in middle-aged/older (64±7 years) versus young (22±2 years) adults (6.5±0.7 versus 1.6±0.2 µmol/L) and inversely related to brachial artery flow-mediated dilation (r2=0.29, P<0.00001). In young mice, 6 months of dietary supplementation with trimethylamine-N-oxide induced an aging-like impairment in carotid artery endothelium-dependent dilation to acetylcholine versus control feeding (peak dilation: 79±3% versus 95±3%, P<0.01). This impairment was accompanied by increased vascular nitrotyrosine, a marker of oxidative stress, and reversed by the superoxide dismutase mimetic 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl. Trimethylamine-N-oxide supplementation also reduced activation of endothelial nitric oxide synthase and impaired nitric oxide-mediated dilation, as assessed with the nitric oxide synthase inhibitor L-NAME (NG-nitro-L-arginine methyl ester). Acute incubation of carotid arteries with trimethylamine-N-oxide recapitulated these events. Next, treatment with 3,3-dimethyl-1-butanol for 8 to 10 weeks to suppress trimethylamine-N-oxide selectively improved endothelium-dependent dilation in old mice to young levels (peak: 90±2%) by normalizing vascular superoxide production, restoring nitric oxide-mediated dilation, and ameliorating superoxide-related suppression of endothelium-dependent dilation. Lastly, among healthy middle-aged/older adults, higher plasma trimethylamine-N-oxide was associated with greater nitrotyrosine abundance in biopsied endothelial cells, and infusion of the antioxidant ascorbic acid restored flow-mediated dilation to young levels, indicating tonic oxidative stress-related suppression of endothelial function with higher circulating trimethylamine-N-oxide. Using multiple experimental approaches in mice and humans, we demonstrate a clear role of trimethylamine-N-oxide in promoting age-related endothelial dysfunction via oxidative stress, which may have implications for prevention of cardiovascular diseases.


Assuntos
Envelhecimento/fisiologia , Endotélio Vascular/efeitos dos fármacos , Metilaminas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Acetilcolina/farmacologia , Adolescente , Adulto , Idoso , Envelhecimento/sangue , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Artéria Braquial/efeitos dos fármacos , Artéria Braquial/fisiologia , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/fisiologia , Óxidos N-Cíclicos/farmacologia , Suplementos Nutricionais , Microbioma Gastrointestinal , Humanos , Metilaminas/administração & dosagem , Metilaminas/sangue , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Óxido Nítrico/sangue , Óxido Nítrico Sintase Tipo III/metabolismo , Marcadores de Spin , Superóxidos/metabolismo , Tirosina/análogos & derivados , Tirosina/sangue , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA