RESUMO
INTRODUCTION: After birth, the lungs must resorb the fluid they contain. This process involves multiple actors such as surfactant, aquaporins and ENaC channels. Preterm newborns often exhibit respiratory distress syndrome due to surfactant deficiency, and transitory tachypnea caused by a delay in lung liquid resorption. Our hypothesis is that surfactant, ENaC and aquaporins are involved in respiratory transition to extrauterine life and altered by preterm birth. We compared these candidates in preterm and term fetal sheeps. MATERIALS AND METHODS: We performed cesarean sections in 8 time-dated pregnant ewes (4 at 100 days and 4 at 140 days of gestation, corresponding to 24 and 36 weeks of gestation in humans), and obtained 13 fetal sheeps in each group. We studied surfactant synthesis (SP-A, SP-B, SP-C), lung liquid resorption (ENaC, aquaporins) and corticosteroid regulation (glucocorticoid receptor, mineralocorticoid receptor and 11-betaHSD2) at mRNA and protein levels. RESULTS: The mRNA expression level of SFTPA, SFTPB and SFTPC was higher in the term group. These results were confirmed at the protein level for SP-B on Western Blot analysis and for SP-A, SP-B and SP-C on immunohistochemical analysis. Regarding aquaporins, ENaC and receptors, mRNA expression levels for AQP1, AQP3, AQP5, ENaCα, ENaCß, ENaCγ and 11ßHSD2 mRNA were also higher in the term group. DISCUSSION: Expression of surfactant proteins, aquaporins and ENaC increases between 100 and 140 days of gestation in an ovine model. Further exploring these pathways and their hormonal regulation could highlight some new explanations in the pathophysiology of neonatal respiratory diseases.
Assuntos
Aquaporinas , Nascimento Prematuro , Gravidez , Humanos , Animais , Ovinos , Feminino , Tensoativos/metabolismo , Nascimento Prematuro/metabolismo , Pulmão/metabolismo , Aquaporinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38-39 Mb genomes include 11,860-14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea-specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.
Assuntos
Ascomicetos/genética , Botrytis/genética , Genoma Fúngico , Doenças das Plantas/microbiologia , Elementos de DNA Transponíveis , Genes Fúngicos , Genômica , Filogenia , Doenças das Plantas/genética , SinteniaRESUMO
The filamentous ascomycete Botrytis cinerea is one of the most studied models for understanding the necrotrophic behaviour of phytopathogenic fungi. The genomes of two strains of B. cinerea have been sequenced (B05.10 and T4), which may contribute to elucidating the virulence polymorphism in this fungus. In this study, both strains were genetically modified in order to construct recipient strains designed to target genes that are hard to knock out. Deletions of BcKu70 gene in B05.10 strain and BcKu80 gene in T4 strain both affected the nonhomologous end-joining (NHEJ) DNA repair mechanism. NHEJ is responsible for the ectopic integration of gene replacement cassettes during fungal transformation and leads to a lower frequency of homologous recombination (HR). Ku deficiencies in B. cinerea did not disturb in vitro or in planta growth, but clearly improved HR efficiency for the putative sesquiterpene cyclase-encoding gene Cnd15, which was hard to knock out in a wild-type strain.