Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 119(1): 176-196, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38575203

RESUMO

4-Coumarate-CoA Ligase (4CL) is an important enzyme in the phenylpropanoid biosynthesis pathway. Multiple 4CLs are identified in Ocimum species; however, their in planta functions remain enigmatic. In this study, we independently overexpressed three Ok4CL isoforms from Ocimum kilimandscharicum (Ok4CL7, -11, and -15) in Nicotiana benthamiana. Interestingly, Ok4CL11 overexpression (OE) caused a rootless or reduced root growth phenotype, whereas overexpression of Ok4CL15 produced normal adventitious root (AR) growth. Ok4CL11 overexpression in N. benthamiana resulted in upregulation of genes involved in flavonoid biosynthesis and associated glycosyltransferases accompanied by accumulation of specific flavonoid-glycosides (kaempferol-3-rhamnoside, kaempferol-3,7-O-bis-alpha-l-rhamnoside [K3,7R], and quercetin-3-O-rutinoside) that possibly reduced auxin levels in plants, and such effects were not seen for Ok4CL7 and -15. Docking analysis suggested that auxin transporters (PINs/LAXs) have higher binding affinity to these specific flavonoid-glycosides, and thus could disrupt auxin transport/signaling, which cumulatively resulted in a rootless phenotype. Reduced auxin levels, increased K3,7R in the middle and basal stem sections, and grafting experiments (intra and inter-species) indicated a disruption of auxin transport by K3,7R and its negative effect on AR development. Supplementation of flavonoids and the specific glycosides accumulated by Ok4CL11-OE to the wild-type N. benthamiana explants delayed the AR emergence and also inhibited AR growth. While overexpression of all three Ok4CLs increased lignin accumulation, flavonoids, and their specific glycosides were accumulated only in Ok4CL11-OE lines. In summary, our study reveals unique indirect function of Ok4CL11 to increase specific flavonoids and their glycosides, which are negative regulators of root growth, likely involved in inhibition of auxin transport and signaling.


Assuntos
Flavonoides , Glicosídeos , Nicotiana , Proteínas de Plantas , Raízes de Plantas , Flavonoides/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Glicosídeos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética
2.
Microb Ecol ; 85(1): 49-60, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34977966

RESUMO

Entomopathogenic fungi offer an effective and eco-friendly alternative to curb insect populations in biocontrol strategy. The evolutionary history of selected entomopathogenic fungi indicates their ancestral relationship with plant endophytes. During this host shifting, entomopathogenic fungi must have acquired multiple mechanisms, including a combination of various biomolecules that make them distinguishable from other fungi. In this review, we focus on understanding various biochemical and molecular mechanisms involved in entomopathogenesis. In particular, we attempt to explain the indispensable role of enlarged gene families of various virulent factors, viz. chitinases, proteases, lipases, specialized metabolites, and cytochrome P450, in entomopathogenesis. Our analysis suggests that entomopathogenic fungi recruit a different set of gene products during the progression of pathogenesis. Knowledge of these bio-molecular interactions between fungi and insect hosts will allow researchers to execute pointed efforts towards the development of improved entomopathogenic fungal strains.


Assuntos
Fungos , Insetos , Animais , Fungos/genética , Insetos/microbiologia , Plantas/microbiologia , Genômica , Endófitos
3.
J Mol Evol ; 90(3-4): 258-270, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35513601

RESUMO

The ATP-binding cassette (ABC) transporter gene family is ubiquitous in the living world. ABC proteins bind and hydrolyze ATP to transport a myriad of molecules across various lipid-containing membrane systems. They have been studied well in plants for transport of a variety of compounds and particularly, in vertebrates due to their direct involvement in resistance mechanisms against several toxic molecules/metabolites. ABC transporters in insects are found within large multigene families involved in the efflux of chemical insecticides and toxic/undesired metabolites originating from food and endogenous metabolism. This review deals with ABC transporter subfamilies of few agronomically important Lepidopteran pests. The transcriptional dynamics and regulation of ABC transporters during insect development emphasizes their functional diversity against insecticides, Cry toxins, and plant specialized metabolites. To generate insights about molecular function and physiological roles of ABCs, functional and structural characterization is necessary. Also, expansion and divergence of ABC transporter gene subfamilies in Lepidopteran insects needs more systematic investigation. We anticipate that newer methods of insect control in agriculture can benefit from an understanding of ABC transporter interactions with a vast range of natural specialized molecules and synthetic compounds.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Inseticidas , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina , Animais , Insetos , Plantas/metabolismo
4.
New Phytol ; 234(4): 1394-1410, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35238413

RESUMO

Solanum steroidal glycoalkaloids (SGAs) are renowned defence metabolites exhibiting spectacular structural diversity. Genes and enzymes generating the SGA precursor pathway, SGA scaffold and glycosylated forms have been largely identified. Yet, the majority of downstream metabolic steps creating the vast repertoire of SGAs remain untapped. Here, we discovered that members of the 2-OXOGLUTARATE-DEPENDENT DIOXYGENASE (2-ODD) family play a prominent role in SGA metabolism, carrying out three distinct backbone-modifying oxidative steps in addition to the three formerly reported pathway reactions. The GLYCOALKALOID METABOLISM34 (GAME34) enzyme catalyses the conversion of core SGAs to habrochaitosides in wild tomato S. habrochaites. Cultivated tomato plants overexpressing GAME34 ectopically accumulate habrochaitosides. These habrochaitoside enriched plants extracts potently inhibit Puccinia spp. spore germination, a significant Solanaceae crops fungal pathogen. Another 2-ODD enzyme, GAME33, acts as a desaturase (via hydroxylation and E/F ring rearrangement) forming unique, yet unreported SGAs. Conversion of bitter α-tomatine to ripe fruit, nonbitter SGAs (e.g. esculeoside A) requires two hydroxylations; while the known GAME31 2-ODD enzyme catalyses hydroxytomatine formation, we find that GAME40 catalyses the penultimate step in the pathway and generates acetoxy-hydroxytomatine towards esculeosides accumulation. Our results highlight the significant contribution of 2-ODD enzymes to the remarkable structural diversity found in plant steroidal specialized metabolism.


Assuntos
Alcaloides , Dioxigenases , Solanum lycopersicum , Solanum tuberosum , Solanum , Alcaloides/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Ácidos Cetoglutáricos/metabolismo , Solanum lycopersicum/genética , Solanum/genética , Solanum/metabolismo , Solanum tuberosum/genética
5.
New Phytol ; 233(3): 1220-1237, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34758118

RESUMO

Steroidal glycoalkaloids (SGAs) are protective metabolites constitutively produced by Solanaceae species. Genes and enzymes generating the vast structural diversity of SGAs have been largely identified. Yet, mechanisms of hormone pathways coordinating defence (jasmonate; JA) and growth (gibberellin; GA) controlling SGAs metabolism remain unclear. We used tomato to decipher the hormonal regulation of SGAs metabolism during growth vs defence tradeoff. This was performed by genetic and biochemical characterisation of different JA and GA pathways components, coupled with in vitro experiments to elucidate the crosstalk between these hormone pathways mediating SGAs metabolism. We discovered that reduced active JA results in decreased SGA production, while low levels of GA or its receptor led to elevated SGA accumulation. We showed that MYC1 and MYC2 transcription factors mediate the JA/GA crosstalk by transcriptional activation of SGA biosynthesis and GA catabolism genes. Furthermore, MYC1 and MYC2 transcriptionally regulate the GA signalling suppressor DELLA that by itself interferes in JA-mediated SGA control by modulating MYC activity through protein-protein interaction. Chemical and fungal pathogen treatments reinforced the concept of JA/GA crosstalk during SGA metabolism. These findings revealed the mechanism of JA/GA interplay in SGA biosynthesis to balance the cost of chemical defence with growth.


Assuntos
Alcaloides , Solanum lycopersicum , Alcaloides/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Solanum lycopersicum/metabolismo , Oxilipinas/metabolismo
6.
Phytochem Rev ; 21(3): 879-913, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34366748

RESUMO

Ocimum species represent commercially important medicinal and aromatic plants. The essential oil biosynthesized by Ocimum species is enriched with specialized metabolites specifically, terpenoids and phenylpropanoids. Interestingly, various Ocimum species are known to exhibit diverse chemical profiles, and this chemical diversity has been at the center of many studies to identify commercially important chemotypes. Here, we present various chemotypes from the Ocimum species and emphasize trends, implications, and strategies for the quality and yield improvement of essential oil. Globally, many Ocimum species have been analyzed for their essential oil composition in over 50 countries. Asia represents the highest number of chemotypes, followed by Africa, South America, and Europe. Ocimum basilicum L. has been the most widespread and well-studied species, followed by O. gratissimum L., O. tenuiflorum L., O. canum Sims, O. americanum and O. kilimandscharicum Gürke. Moreover, various molecular reasons, benefits, adverse health effects and mechanisms behind this vast chemodiversity have been discussed. Different strategies of plant breeding, metabolic engineering, transgenic, and tissue-culture, along with anatomical modifications, are surveyed to enhance specific chemotypic profiles and essential oil yield in numerous Ocimum species. Consequently, chemical characterization of the essential oil obtained from Ocimum species has become indispensable for its proper utilization. The present chemodiversity knowledge from Ocimum species will help to exploit various applications in the industrial, agriculture, biopharmaceutical, and food sectors. Supplementary Information: The online version contains supplementary material available at 10.1007/s11101-021-09767-z.

7.
BMC Plant Biol ; 21(1): 267, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107869

RESUMO

BACKGROUND: Serine protease inhibitors belonging to the Potato type-II Inhibitor family Protease Inhibitors (Pin-II type PIs) are essential plant defense molecules. They are characterized by multiple inhibitory repeat domains, conserved disulfide bond pattern, and a tripeptide reactive center loop. These features of Pin-II type PIs make them potential molecules for protein engineering and designing inhibitors for agricultural and therapeutic applications. However, the diversity in these PIs remains unexplored due to the lack of annotated protein sequences and their functional attributes in the available databases. RESULTS: We have developed a database, PINIR (Pin-II type PIs Information Resource), by systematic collection and manual annotation of 415 Pin-II type PI protein sequences. For each PI, the number and position for signature sequences are specified: 695 domains, 75 linkers, 63 reactive center loops, and 10 disulfide bond patterns are identified and mapped. Database analysis revealed novel subcategories of PIs, species-correlated occurrence of inhibitory domains, reactive center loops, and disulfide bond patterns. By analyzing linker regions, we predict that alternative processing at linker regions could generate PI variants in the Solanaceae family. CONCLUSION: PINIR ( https://pinir.ncl.res.in ) provides a web interface for browsing and analyzing the protein sequences of Pin-II type PIs. Information about signature sequences, spatio-temporal expression, biochemical properties, gene sequences, and literature references are provided. Analysis of PINIR depicts conserved species-specific features of Pin-II type PI protein sequences. Diversity in the sequence of inhibitory domains and reactive loops directs potential applications to engineer Pin-II type PIs. The PINIR database will serve as a comprehensive information resource for further research into Pin-II type PIs.


Assuntos
Sequência de Aminoácidos , Bases de Dados como Assunto , Resistência à Doença/genética , Genes de Plantas , Proteínas de Plantas/genética , Inibidores de Serina Proteinase/genética
8.
Planta ; 253(2): 61, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33538903

RESUMO

MAIN CONCLUSION: During the process of plant domestication, the selection and traditional breeding for desired characters such as flavor, juiciness and nutritional value of fruits, probably have resulted in gain or loss of specialized metabolites contributing to these traits. Their appearance in fruits is likely due to the acquisition of novel and specialized metabolic pathways and their regulation, driven by systematic molecular evolutionary events facilitated by traditional breeding. Plants change their armory of specialized metabolism to adapt and survive in diverse ecosystems. This may occur through molecular evolutionary events, such as single nucleotide polymorphism, gene duplication and transposition, leading to convergent or divergent evolution of biosynthetic pathways producing such specialized metabolites. Breeding and selection for improved specific and desired traits (fruit size, color, taste, flavor, etc.) in fruit crops through conventional breeding approaches may further alter content and profile of specialized metabolites. Biosynthetic routes of these metabolites have been studied in various plants. Here, we explore the influence of plant domestication and breeding processes on the selection of biosynthetic pathways of favorable specialized metabolites in fruit crops. An orderly clustered arrangement of genes associated with their production is observed in many fruit crops. We further analyzed selection-based acquisition of specialized metabolic pathways comparing first the metabolic profiles and genes involved in their biosynthesis, followed by the genomic organization of such genes between wild and domesticated horticultural crops. Domestication of crop plants favored the acquisition and retention of metabolic pathways that enhanced the fruit value while eliminated those which produced toxic or unfavorable metabolites. Interestingly, unintentional reorganization of complex metabolic pathways by selection and traditional breeding processes has endowed us with flavorful, juicy and nutritionally rich fruits.


Assuntos
Produtos Agrícolas/metabolismo , Domesticação , Frutas , Redes e Vias Metabólicas , Melhoramento Vegetal , Produtos Agrícolas/genética , Ecossistema , Frutas/genética , Frutas/metabolismo
9.
Molecules ; 26(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204857

RESUMO

Phytochemicals belonging to the group of alkaloids are signature specialized metabolites endowed with countless biological activities. Plants are armored with these naturally produced nitrogenous compounds to combat numerous challenging environmental stress conditions. Traditional and modern healthcare systems have harnessed the potential of these organic compounds for the treatment of many ailments. Various chemical entities (functional groups) attached to the central moiety are responsible for their diverse range of biological properties. The development of the characterization of these plant metabolites and the enzymes involved in their biosynthesis is of an utmost priority to deliver enhanced advantages in terms of biological properties and productivity. Further, the incorporation of whole/partial metabolic pathways in the heterologous system and/or the overexpression of biosynthetic steps in homologous systems have both become alternative and lucrative methods over chemical synthesis in recent times. Moreover, in-depth research on alkaloid biosynthetic pathways has revealed numerous chemical modifications that occur during alkaloidal conversions. These chemical reactions involve glycosylation, acylation, reduction, oxidation, and methylation steps, and they are usually responsible for conferring the biological activities possessed by alkaloids. In this review, we aim to discuss the alkaloidal group of plant specialized metabolites and their brief classification covering major categories. We also emphasize the diversity in the basic structures of plant alkaloids arising through enzymatically catalyzed structural modifications in certain plant species, as well as their emerging diverse biological activities. The role of alkaloids in plant defense and their mechanisms of action are also briefly discussed. Moreover, the commercial utilization of plant alkaloids in the marketplace displaying various applications has been enumerated.


Assuntos
Alcaloides/química , Alcaloides/metabolismo , Fenômenos Fisiológicos Vegetais , Plantas/química , Acilação , Alcaloides/farmacologia , Vias Biossintéticas , Glicosilação , Metilação , Estrutura Molecular , Oxirredução , Compostos Fitoquímicos/química , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/farmacologia
10.
Mol Cell Proteomics ; 17(7): 1324-1336, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29661852

RESUMO

Insects adapt to plant protease inhibitors (PIs) present in their diet by differentially regulating multiple digestive proteases. However, mechanisms regulating protease gene expression in insects are largely enigmatic. Ingestion of multi-domain recombinant Capsicum annuum protease inhibitor-7 (CanPI-7) arrests growth and development of Helicoverpa armigera (Lepidoptera: Noctuidae). Using de novo RNA sequencing and proteomic analysis, we examined the response of H. armigera larvae fed on recombinant CanPI-7 at different time intervals. Here, we present evidence supporting a dynamic transition in H. armigera protease expression on CanPI-7 feeding with general down-regulation of protease genes at early time points (0.5 to 6 h) and significant up-regulation of specific trypsin, chymotrypsin and aminopeptidase genes at later time points (12 to 48 h). Further, coexpression of H. armigera endogenous PIs with several digestive protease genes were apparent. In addition to the differential expression of endogenous H. armigera PIs, we also observed a distinct novel isoform of endogenous PI in CanPI-7 fed H. armigera larvae. Based on present and earlier studies, we propose potential mechanism of protease regulation in H. armigera and subsequent adaptation strategy to cope with anti-nutritional components of plants.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Mariposas/genética , Mariposas/metabolismo , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/metabolismo , Proteômica/métodos , Animais , Sistema Digestório/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Modelos Biológicos , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
11.
Planta ; 251(1): 28, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31802261

RESUMO

MAIN CONCLUSION: Exploration with high-throughput transcriptomics and metabolomics of two varieties of Ceropegia bulbosa identifies candidate genes, crucial metabolites and a potential cerpegin biosynthetic pathway. Ceropegia bulbosa is an important medicinal plant, used in the treatment of various ailments including diarrhea, dysentery, and syphilis. This is primarily attributed to the presence of pharmaceutically active secondary metabolites, especially cerpegin. As this plant belongs to an endemic threatened category, genomic resources are not available hampering exploration on the molecular basis of cerpegin accumulation till now. Therefore, we undertook high-throughput metabolomic and transcriptomic analyses using different tissues from two varieties namely, C. bulbosa var. bulbosa and C. bulbosa var. lushii. Metabolomic analysis revealed spatial and differential accumulation of various metabolites. We chemically synthesized and characterized the cerpegin and its derivatives by liquid chromatography tandem-mass spectrometry (LC-MS/MS). Importantly, these comparisons suggested the presence of cerpegin and 5-allyl cerpegin in all C. bulbosa tissues. Further, de novo transcriptome analysis indicated the presence of significant transcripts for secondary metabolic pathways through the Kyoto encyclopedia of genes and genomes database. Tissue-specific profiling of transcripts and metabolites showed a significant correlation, suggesting the intricate mechanism of cerpegin biosynthesis. The expression of potential candidate genes from the proposed cerpegin biosynthetic pathway was further validated by qRT-PCR and NanoString nCounter. Overall, our findings propose a potential route of cerpegin biosynthesis. Identified transcripts and metabolites have built a foundation as new molecular resources that could facilitate future research on biosynthesis, regulation, and engineering of cerpegin or other important metabolites in such non-model plants.


Assuntos
Apocynaceae/genética , Apocynaceae/metabolismo , Vias Biossintéticas/genética , Perfilação da Expressão Gênica , Metabolômica , Piridonas/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Metaboloma , Anotação de Sequência Molecular , Especificidade de Órgãos/genética , Análise de Componente Principal , Piridonas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Physiol Mol Biol Plants ; 25(1): 47-57, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30804629

RESUMO

Ocimum species produces a varied mix of different metabolites that imparts immense medicinal properties. To explore this chemo-diversity, we initially carried out metabolite profiling of different tissues of five Ocimum species and identified the major terpenes. This analysis broadly classified these five Ocimum species into two distinct chemotypes namely, phenylpropanoid-rich and terpene-rich. In particular, ß-caryophyllene, myrcene, limonene, camphor, borneol and selinene were major terpenes present in these Ocimum species. Subsequently, transcriptomic analysis of pooled RNA samples from different tissues of Ocimum gratissimum, O. tenuiflorum and O. kilimandscharicum identified 38 unique transcripts of terpene synthase (TPS) gene family. Full-length gene cloning, followed by sequencing and phylogenetic analysis of three TPS transcripts were carried out along with their expression in various tissues. Terpenoid metabolite and expression profiling of candidate TPS genes in various tissues of Ocimum species revealed spatial variances. Further, putative TPS contig 19414 (TPS1) was selected to corroborate its role in terpene biosynthesis. Agrobacterium-mediated transient over-expression assay of TPS1 in the leaves of O. kilimandscharicum and subsequent metabolic and gene expression analyses indicated it as a cis-ß-terpineol synthase. Overall, present study provided deeper understanding of terpene diversity in Ocimum species and might help in the enhancement of their terpene content through advanced biotechnological approaches.

13.
Planta ; 248(5): 1063-1078, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30078075

RESUMO

MAIN CONCLUSIONS: The 4-coumarate-CoA ligases (4CL) contribute in channelizing flux of different phenylpropanoid biosynthetic pathways. Expression of 4CL is optimized at developmental stages and in response to environmental triggers such as biotic and abiotic stresses. The enzyme is valuable in metabolic pathway engineering for curcuminoids, resveratrol, biofuel production and nutritional improvement. Vigorous analysis of regulation at functional and expression level is obligatory to attain efficient commercial production of candidate metabolites using 4CL. Phenylpropanoid pathway provides precursors for numerous secondary metabolites in plants. In this pathway, 4-coumarate-CoA ligase (EC 6.2.1.12, 4CL) is the main branch point enzyme which generates activated thioesters. Being the last enzyme of three shared common steps in general phenylpropanoid pathway, it contributes to channelize precursors for different phenylpropanoids. In plants, 4CL enzymes are present in multiple isoforms and encoded by small gene family. It belongs to adenylate-forming enzyme family and catalyzes the reaction that converts hydroxy or methoxy cinnamic acid derivatives to corresponding thioesters. These thioesters are further utilized for biosynthesis of phenylpropanoids, which are known for having numerous nutritional and medicinal applications. In addition, the 4CL enzymes have been characterized from various plants for their role in plant physiology or in biotic and abiotic stresses. Furthermore, specific isoforms are differentially regulated upon exposure to diverse stimuli leading to flux diversion toward the particular metabolite biosynthesis. Evolutionary studies showed that 4CL separately evolved after monocot and dicot segregation. Here, we provide a comprehensive review on 4CL, which includes evolution, function, gene/protein structure, role in metabolite biosynthesis and cellular partition, and their regulation. Based on the available data, we have explored the scope for pathway engineering by utilizing 4CL enzymes.


Assuntos
Coenzima A Ligases/genética , Plantas/enzimologia , Evolução Biológica , Coenzima A Ligases/química , Coenzima A Ligases/metabolismo , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Lignina/biossíntese , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , Filogenia , Plantas/genética , Plantas/metabolismo
14.
Plant Biotechnol J ; 16(8): 1502-1513, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29377467

RESUMO

Early blight (EB), caused by Alternaria solani, is a major threat to global tomato production. In comparison with cultivated tomato (Solanum lycopersicum), a wild relative, S. arcanum exhibits strong resistance against EB. However, molecular cascades operating during EB resistance in wild or cultivated tomato plants are largely obscure. Here, we provide novel insight into spatio-temporal molecular events in S. arcanum against A. solani. Transcriptome and co-expression analysis presented 33-WRKYs as promising candidates of which 12 SaWRKYs displayed differential expression patterns in resistant and susceptible accessions during EB disease progression. Among these, SaWRKY1 exhibited induced expression with significant modulation in xyloglucan endotrans hydrolase 5 (XTH5) and MYB2 expressions that correlated with the disease phenotypes. Electro-mobility shift assay confirmed physical interaction of recombinant SaWRKY1 to SaXTH5 and SaMYB2 promoters. Comparative WRKY1 promoter analysis between resistant and susceptible plants revealed the presence of crucial motifs for defence mechanism exclusively in resistant accession. Additionally, many defence-related genes displayed significant expression variations in both the accessions. Further, WRKY1 overexpressing transgenic plants exhibited higher levels of EB resistance while RNAi silencing lines had increased susceptibility to A. solani with altered expression of XTH5 and MYB2. Overall, these findings demonstrate the positive influence of WRKY1 in improving EB resistance in wild tomato and this could be further utilized as a potential target through genetic engineering to augment protection against A. solani in crop plants.


Assuntos
Alternaria/patogenicidade , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Solanum lycopersicum/microbiologia , Solanum/microbiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
16.
Mol Cell Proteomics ; 15(6): 2011-20, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27056913

RESUMO

A Hyperglycemic condition in diabetes promotes formation of advanced glycation end products, which are known to elicit immune response and form complexes with immunoglobulins called circulating immune complexes. To investigate the involvement of advanced glycation end product (AGE)-modified proteins in the elicitation of an immune response, circulating immune complexes were isolated and proteins associated were identified and characterized. Label-free-based mass spectrometric analysis of circulating immune complexes in clinical plasma of prediabetic, newly diagnosed diabetes, and diabetic microalbuminurea revealed elevated levels of serum albumin in the circulating immune complexes, which were also observed to be AGE modified. Further, to examine the role of glycation, circulating immune complexeswere analyzed in the streptozotocin-induced diabetic mice treated with or without aminoguanidine, a prototype glycation inhibitor. Mass spectrometric analysis of circulating immune complexes showed elevated levels of serum albumin in plasma from diabetic mice over that of control animals. Aminoguanidine-treated diabetic mice displayed decreased AGE modification of plasma albumin, accompanied by a reduced level of albumin in the circulating immune complexes. In addition, elevated levels of proinflammatory cytokines such as IL-1b, IL-2, and TNF-alpha were observed in diabetes, which were reduced with aminoguanidine treatment, suggesting the involvement of glycation in the immune response.


Assuntos
Proteínas Sanguíneas/análise , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Produtos Finais de Glicação Avançada/imunologia , Proteômica/métodos , Animais , Proteínas Sanguíneas/efeitos dos fármacos , Proteínas Sanguíneas/imunologia , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Guanidinas/administração & dosagem , Guanidinas/farmacologia , Humanos , Masculino , Espectrometria de Massas , Camundongos , Albumina Sérica/análise , Estreptozocina
17.
J Proteome Res ; 16(2): 1050-1060, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28030762

RESUMO

Pre-eclampsia is a hypertensive disorder characterized by the new onset of hypertension >140/90 mmHg and proteinuria after the 20th week of gestation. The disorder is multifactorial and originates with abnormal placentation. Comparison of the placental proteome of normotensive (n = 25) and pre-eclamptic (n = 25) patients by gel-free proteomic techniques identified a total of 2145 proteins in the placenta of which 180 were differentially expressed (>1.3 fold, p < 0.05). Gene ontology enrichment analysis of biological process suggested that the differentially expressed proteins belonged to various physiological processes such as angiogenesis, apoptosis, oxidative stress, hypoxia, and placental development, which are implicated in the pathophysiology of pre-eclampsia. Some of the differentially expressed proteins were monitored in the plasma by multiple reaction monitoring analysis, which showed an increase in apolipoproteins A-I and A-II in gestational weeks 26-30 (2-fold, p < 0.01), while haptoglobin and hemopexin decreased in gestational weeks 26-30 and week 40/at delivery (1.8 fold, p < 0.01) in pre-eclamptic patients. This study provides a proteomic insight into the pathophysiology of pre-eclampsia. Identified candidate proteins can be evaluated further for the development of potential biomarkers associated with pre-eclampsia pathogenesis.


Assuntos
Hipóxia/sangue , Neovascularização Patológica/sangue , Placenta/metabolismo , Pré-Eclâmpsia/sangue , Proteoma/genética , Proteômica/métodos , Adulto , Apolipoproteína A-I/sangue , Apolipoproteína A-I/genética , Apolipoproteína A-II/sangue , Apolipoproteína A-II/genética , Apoptose/genética , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Idade Gestacional , Haptoglobinas/genética , Haptoglobinas/metabolismo , Hemopexina/genética , Hemopexina/metabolismo , Humanos , Hipóxia/diagnóstico , Hipóxia/genética , Hipóxia/patologia , Anotação de Sequência Molecular , Neovascularização Patológica/diagnóstico , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Estresse Oxidativo , Placenta/irrigação sanguínea , Placenta/patologia , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Gravidez , Mapeamento de Interação de Proteínas , Proteoma/metabolismo
18.
Biochim Biophys Acta ; 1864(11): 1539-47, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27519164

RESUMO

Isoprenoids and phenylpropanoids are the major secondary metabolite constituents in Ocimum genus. Though enzymes from phenylpropanoid pathway have been characterized from few plants, limited information exists on how they modulate levels of secondary metabolites. Here, we performed phenylpropanoid profiling in different tissues from five Ocimum species, which revealed significant variations in secondary metabolites including eugenol, eugenol methyl ether, estragole and methyl cinnamate levels. Expression analysis of eugenol synthase (EGS) gene showed higher transcript levels especially in young leaves and inflorescence; and were positively correlated with eugenol contents. Additionally, transcript levels of coniferyl alcohol acyl transferase, a key enzyme diverting pool of substrate to phenylpropanoids, were in accordance with their abundance in respective species. In particular, eugenol methyl transferase expression positively correlated with higher levels of eugenol methyl ether in Ocimum tenuiflorum. Further, EGSs were functionally characterized from four Ocimum species varying in their eugenol contents. Kinetic and expression analyses indicated, higher enzyme turnover and transcripts levels, in species accumulating more eugenol. Moreover, biochemical and bioinformatics studies demonstrated that coniferyl acetate was the preferred substrate over coumaryl acetate when used, individually or together, in the enzyme assay. Overall, this study revealed the preliminary evidence for varied accumulation of eugenol and its abundance over chavicol in these Ocimum species. Current findings could potentially provide novel insights for metabolic modulations in medicinal and aromatic plants.


Assuntos
Eugenol/metabolismo , Regulação da Expressão Gênica de Plantas , Ocimum/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Compostos Alílicos/isolamento & purificação , Compostos Alílicos/metabolismo , Derivados de Alilbenzenos , Sequência de Aminoácidos , Anisóis/isolamento & purificação , Anisóis/metabolismo , Cinamatos/isolamento & purificação , Cinamatos/metabolismo , Sequência Conservada , Ensaios Enzimáticos , Eugenol/análogos & derivados , Eugenol/isolamento & purificação , Metiltransferases/genética , Metiltransferases/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ocimum/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Fenóis/isolamento & purificação , Fenóis/metabolismo , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Óleos de Plantas/química , Proteínas/genética , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metabolismo Secundário , Alinhamento de Sequência , Especificidade por Substrato
19.
Plant Mol Biol ; 94(3): 319-332, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28405784

RESUMO

The smallest 32 amino acid α-amylase inhibitor from Amaranthus hypochondriacus (AAI) is reported. The complete gene of pre-protein (AhAI) encoding a 26 amino acid (aa) signal peptide followed by the 43 aa region and the previously identified 32 aa peptide was cloned successfully. Three cysteine residues and one disulfide bond conserved within known α-amylase inhibitors were present in AhAI. Identical genomic and open reading frame was found to be present in close relatives of A. hypochondriacus namely Amaranthus paniculatus, Achyranthes aspera and Celosia argentea. Interestingly, the 3'UTR of AhAI varied in these species. The highest expression of AhAI was observed in A. hypochondriacus inflorescence; however, it was not detected in the seed. We hypothesized that the inhibitor expressed in leaves and inflorescence might be transported to the seeds. Sub-cellular localization studies clearly indicated the involvement of AhAI signal peptide in extracellular secretion. Full length rAhAI showed differential inhibition against α-amylases from human, insects, fungi and bacteria. Particularly, α-amylases from Helicoverpa armigera (Lepidoptera) were not inhibited by AhAI while Tribolium castaneum and Callosobruchus chinensis (Coleoptera) α-amylases were completely inhibited. Molecular docking of AhAI revealed tighter interactions with active site residues of T. castaneum α-amylase compared to C. chinensis α-amylase, which could be the rationale behind the disparity in their IC50. Normal growth, development and adult emergence of C. chinensis were hampered after feeding on rAhAI. Altogether, the ability of AhAI to affect the growth of C. chinensis demonstrated its potential as an efficient bio-control agent, especially against stored grain pests.


Assuntos
Amaranthus/metabolismo , Besouros/enzimologia , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/metabolismo , alfa-Amilases/antagonistas & inibidores , Achyranthes/metabolismo , Sequência de Aminoácidos , Animais , Celosia/metabolismo , Clonagem Molecular , Modelos Moleculares , Proteínas de Plantas/genética , Conformação Proteica , Transporte Proteico
20.
Plant Mol Biol ; 95(4-5): 411-423, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28980117

RESUMO

KEY MESSAGE: Exploration with high throughput leaf metabolomics along with functional genomics in wild tomato unreveal potential role of steroidal glyco-alkaloids and phenylpropanoids during early blight resistance. Alternaria solani severely affects tomato (Solanum lycopersicum L.) yield causing early blight (EB) disease in tropical environment. Wild relative, Solanum arcanum Peralta could be a potential source of EB resistance; however, its underlying molecular mechanism largely remains unexplored. Hence, non-targeted metabolomics was applied on resistant and susceptible S. arcanum accessions upon A. solani inoculation to unravel metabolic dynamics during different stages of disease progression. Total 2047 potential metabolite peaks (mass signals) were detected of which 681 and 684 metabolites revealed significant modulation and clear differentiation in resistant and susceptible accessions, respectively. Majority of the EB-triggered metabolic changes were active from steroidal glycol-alkaloid (SGA), lignin and flavonoid biosynthetic pathways. Further, biochemical and gene expression analyses of key enzymes from these pathways positively correlated with phenotypic variation in the S. arcanum accessions indicating their potential role in EB. Additionally, transcription factors regulating lignin biosynthesis were also up-regulated in resistant plants and electrophoretic mobility shift assay revealed sequence-specific binding of rSaWRKY1 with MYB20 promoter. Moreover, transcript accumulation of key genes from phenylpropanoid and SGA pathways along with WRKY and MYB in WRKY1 transgenic tomato lines supported above findings. Overall, this study highlights vital roles of SGAs as phytoalexins and phenylpropanoids along with lignin accumulation unrevealing possible mechanistic basis of EB resistance in wild tomato.


Assuntos
Alcaloides/metabolismo , Alternaria/fisiologia , Regulação da Expressão Gênica de Plantas , Metabolômica , Doenças das Plantas/imunologia , Solanum/metabolismo , Alcaloides/química , Vias Biossintéticas , Resistência à Doença , Flavonoides/metabolismo , Glicóis/química , Glicóis/metabolismo , Lignina/metabolismo , Fenótipo , Fitosteróis/química , Fitosteróis/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Saponinas/metabolismo , Metabolismo Secundário , Solanum/genética , Solanum/imunologia , Solanum/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA