Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mod Pathol ; 29(10): 1143-54, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27312066

RESUMO

Protein marker levels in formalin-fixed, paraffin-embedded tissue sections traditionally have been assayed by chromogenic immunohistochemistry and evaluated visually by pathologists. Pathologist scoring of chromogen staining intensity is subjective and generates low-resolution ordinal or nominal data rather than continuous data. Emerging digital pathology platforms now allow quantification of chromogen or fluorescence signals by computer-assisted image analysis, providing continuous immunohistochemistry values. Fluorescence immunohistochemistry offers greater dynamic signal range than chromogen immunohistochemistry, and combined with image analysis holds the promise of enhanced sensitivity and analytic resolution, and consequently more robust quantification. However, commercial fluorescence scanners and image analysis software differ in features and capabilities, and claims of objective quantitative immunohistochemistry are difficult to validate as pathologist scoring is subjective and there is no accepted gold standard. Here we provide the first side-by-side validation of two technologically distinct commercial fluorescence immunohistochemistry analysis platforms. We document highly consistent results by (1) concordance analysis of fluorescence immunohistochemistry values and (2) agreement in outcome predictions both for objective, data-driven cutpoint dichotomization with Kaplan-Meier analyses or employment of continuous marker values to compute receiver-operating curves. The two platforms examined rely on distinct fluorescence immunohistochemistry imaging hardware, microscopy vs line scanning, and functionally distinct image analysis software. Fluorescence immunohistochemistry values for nuclear-localized and tyrosine-phosphorylated Stat5a/b computed by each platform on a cohort of 323 breast cancer cases revealed high concordance after linear calibration, a finding confirmed on an independent 382 case cohort, with concordance correlation coefficients >0.98. Data-driven optimal cutpoints for outcome prediction by either platform were reciprocally applicable to the data derived by the alternate platform, identifying patients with low Nuc-pYStat5 at ~3.5-fold increased risk of disease progression. Our analyses identified two highly concordant fluorescence immunohistochemistry platforms that may serve as benchmarks for testing of other platforms, and low interoperator variability supports the implementation of objective tumor marker quantification in pathology laboratories.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/metabolismo , Imunofluorescência/métodos , Processamento de Imagem Assistida por Computador/métodos , Feminino , Humanos , Reprodutibilidade dos Testes
2.
Am J Pathol ; 185(9): 2505-22, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26362718

RESUMO

Active Stat5a/b predicts early recurrence and disease-specific death in prostate cancer (PC), which both typically are caused by development of metastatic disease. Herein, we demonstrate that Stat5a/b induces epithelial-to-mesenchymal transition (EMT) of PC cells, as shown by Stat5a/b regulation of EMT marker expression (Twist1, E-cadherin, N-cadherin, vimentin, and fibronectin) in PC cell lines, xenograft tumors in vivo, and patient-derived PCs ex vivo using organ explant cultures. Jak2-Stat5a/b signaling induced functional end points of EMT as well, indicated by disruption of epithelial cell monolayers and increased migration and adhesion of PC cells to fibronectin. Knockdown of Twist1 suppressed Jak2-Stat5a/b-induced EMT properties of PC cells, which were rescued by re-introduction of Twist1, indicating that Twist1 mediates Stat5a/b-induced EMT in PC cells. While promoting EMT, Jak2-Stat5a/b signaling induced stem-like properties in PC cells, such as sphere formation and expression of cancer stem cell markers, including BMI1. Mechanistically, both Twist1 and BMI1 were critical for Stat5a/b induction of stem-like features, because genetic knockdown of Twist1 suppressed Stat5a/b-induced BMI1 expression and sphere formation in stem cell culture conditions, which were rescued by re-introduction of BMI1. By using human prolactin knock-in mice, we demonstrate that prolactin-Stat5a/b signaling promoted metastases formation of PC cells in vivo. In conclusion, our data support the concept that Jak2-Stat5a/b signaling promotes metastatic progression of PC by inducing EMT and stem cell properties in PC cells.


Assuntos
Transição Epitelial-Mesenquimal , Janus Quinase 2/metabolismo , Neoplasias da Próstata/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Animais , Caderinas/metabolismo , Humanos , Masculino , Camundongos , Células-Tronco Neoplásicas/patologia , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/patologia , Recidiva , Transdução de Sinais/fisiologia , Proteína 1 Relacionada a Twist/metabolismo
3.
Breast Cancer Res ; 15(5): R73, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24004716

RESUMO

INTRODUCTION: Emerging evidence in estrogen receptor-positive breast cancer supports the notion that prolactin-Stat5 signaling promotes survival and maintenance of differentiated luminal cells, and loss of nuclear tyrosine phosphorylated Stat5 (Nuc-pYStat5) in clinical breast cancer is associated with increased risk of antiestrogen therapy failure. However, the molecular mechanisms underlying loss of Nuc-pYStat5 in breast cancer remain poorly defined. METHODS: We investigated whether moderate extracellular acidosis of pH 6.5 to 6.9 frequently observed in breast cancer inhibits prolactin-Stat5 signaling, using in vitro and in vivo experimental approaches combined with quantitative immunofluorescence protein analyses to interrogate archival breast cancer specimens. RESULTS: Moderate acidosis at pH 6.8 potently disrupted signaling by receptors for prolactin but not epidermal growth factor, oncostatin M, IGF1, FGF or growth hormone. In breast cancer specimens there was mutually exclusive expression of Nuc-pYStat5 and GLUT1, a glucose transporter upregulated in glycolysis-dependent carcinoma cells and an indirect marker of lactacidosis. Mutually exclusive expression of GLUT1 and Nuc-pYStat5 occurred globally or regionally within tumors, consistent with global or regional acidosis. All prolactin-induced signals and transcripts were suppressed by acidosis, and the acidosis effect was rapid and immediately reversible, supporting a mechanism of acidosis disruption of prolactin binding to receptor. T47D breast cancer xenotransplants in mice displayed variable acidosis (pH 6.5 to 6.9) and tumor regions with elevated GLUT1 displayed resistance to exogenous prolactin despite unaltered levels of prolactin receptors and Stat5. CONCLUSIONS: Moderate extracellular acidosis effectively blocks prolactin signaling in breast cancer. We propose that acidosis-induced prolactin resistance represents a previously unrecognized mechanism by which breast cancer cells may escape homeostatic control.


Assuntos
Acidose/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Prolactina/metabolismo , Fator de Transcrição STAT5/metabolismo , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Modelos Animais de Doenças , Espaço Extracelular/metabolismo , Feminino , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Glicólise , Xenoenxertos , Humanos , Fosforilação , Transporte Proteico , Receptores da Prolactina/metabolismo , Transdução de Sinais
4.
JCO Precis Oncol ; 7: e2100498, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652667

RESUMO

PURPOSE: T-cell-mediated cytotoxicity is suppressed when programmed cell death-1 (PD-1) is bound by PD-1 ligand-1 (PD-L1) or PD-L2. Although PD-1 inhibitors have been approved for triple-negative breast cancer, the lower response rates of 25%-30% in estrogen receptor-positive (ER+) breast cancer will require markers to identify likely responders. The focus of this study was to evaluate whether PD-L2, which has higher affinity than PD-L1 for PD-1, is a predictor of early recurrence in ER+ breast cancer. METHODS: PD-L2 protein levels in cancer cells and stromal cells of therapy-naive, localized or locoregional ER+ breast cancers were measured retrospectively by quantitative immunofluorescence histocytometry and correlated with progression-free survival (PFS) in the main study cohort (n = 684) and in an independent validation cohort (n = 273). All patients subsequently received standard-of-care adjuvant therapy without immune checkpoint inhibitors. RESULTS: Univariate analysis of the main cohort revealed that high PD-L2 expression in cancer cells was associated with shorter PFS (hazard ratio [HR], 1.8; 95% CI, 1.3 to 2.6; P = .001), which was validated in an independent cohort (HR, 2.3; 95% CI, 1.1 to 4.8; P = .026) and remained independently predictive after multivariable adjustment for common clinicopathological variables (HR, 2.0; 95% CI, 1.4 to 2.9; P < .001). Subanalysis of the ER+ breast cancer patients treated with adjuvant chemotherapy (n = 197) revealed that high PD-L2 levels in cancer cells associated with short PFS in univariate (HR, 2.5; 95% CI, 1.4 to 4.4; P = .003) and multivariable analyses (HR, 3.4; 95% CI, 1.9 to 6.2; P < .001). CONCLUSION: Up to one third of treatment-naive ER+ breast tumors expressed high PD-L2 levels, which independently predicted poor clinical outcome, with evidence of further elevated risk of progression in patients who received adjuvant chemotherapy. Collectively, these data warrant studies to gain a deeper understanding of PD-L2 in the progression of ER+ breast cancer and may provide rationale for immune checkpoint blockade for this patient group.


Assuntos
Antígeno B7-H1 , Neoplasias de Mama Triplo Negativas , Humanos , Receptor de Morte Celular Programada 1 , Estudos Retrospectivos
5.
Breast Cancer Res ; 14(5): R130, 2012 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23036105

RESUMO

INTRODUCTION: Signal transducer and activator of transcripton-5a (Stat5a) and its close homologue, Stat5b, mediate key physiological effects of prolactin and growth hormone in mammary glands. In breast cancer, loss of nuclear localized and tyrosine phosphorylated Stat5a/b is associated with poor prognosis and increased risk of antiestrogen therapy failure. Here we quantify for the first time levels of Stat5a and Stat5b over breast cancer progression, and explore their potential association with clinical outcome. METHODS: Stat5a and Stat5b protein levels were quantified in situ in breast-cancer progression material. Stat5a and Stat5b transcript levels in breast cancer were correlated with clinical outcome in 936 patients. Stat5a protein was further quantified in four archival cohorts totaling 686 patients with clinical outcome data by using multivariate models. RESULTS: Protein levels of Stat5a but not Stat5b were reduced in primary breast cancer and lymph node metastases compared with normal epithelia. Low tumor levels of Stat5a but not Stat5b mRNA were associated with poor prognosis. Experimentally, only limited overlap between Stat5a- and Stat5b-modulated genes was found. In two cohorts of therapy-naïve, node-negative breast cancer patients, low nuclear Stat5a protein levels were an independent marker of poor prognosis. Multivariate analysis of two cohorts treated with antiestrogen monotherapy revealed that low nuclear Stat5a levels were associated with a more than fourfold risk of unfavorable outcome. CONCLUSIONS: Loss of Stat5a represents a new independent marker of poor prognosis in node-negative breast cancer and may be a predictor of response to antiestrogen therapy if validated in randomized clinical trials.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fator de Transcrição STAT5/metabolismo , Adulto , Idoso , Neoplasias da Mama/mortalidade , Neoplasias da Mama/terapia , Núcleo Celular/metabolismo , Terapia Combinada , Progressão da Doença , Feminino , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Avaliação de Resultados da Assistência ao Paciente , Fosforilação , Prognóstico , Transporte Proteico , Resultado do Tratamento , Carga Tumoral
6.
Clin Cancer Res ; 24(24): 6355-6366, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30097435

RESUMO

PURPOSE: Parathyroid hormone-related protein (PTHrP) is required for normal mammary gland development and biology. A PTHLH gene polymorphism is associated with breast cancer risk, and PTHrP promotes growth of osteolytic breast cancer bone metastases. Accordingly, current dogma holds that PTHrP is upregulated in malignant primary breast tumors, but solid evidence for this assumption is missing. EXPERIMENTAL DESIGN: We used quantitative IHC to measure PTHrP in normal and malignant breast epithelia, and correlated PTHrP levels in primary breast cancer with clinical outcome. RESULTS: PTHrP levels were markedly downregulated in malignant compared with normal breast epithelia. Moreover, low levels of nuclear localized PTHrP in cancer cells correlated with unfavorable clinical outcome in a test and a validation cohort of breast cancer treated at different institutions totaling nearly 800 cases. PTHrP mRNA levels in tumors of a third cohort of 737 patients corroborated this association, also after multivariable adjustment for standard clinicopathologic parameters. Breast cancer PTHrP levels correlated strongly with transcription factors Stat5a/b, which are established markers of favorable prognosis and key mediators of prolactin signaling. Prolactin stimulated PTHrP transcript and protein in breast cancer cell lines in vitro and in vivo, effects mediated by Stat5 through the P2 gene promoter, producing transcript AT6 encoding the PTHrP 1-173 isoform. Low levels of AT6, but not two alternative transcripts, correlated with poor clinical outcome. CONCLUSIONS: This study overturns the prevailing view that PTHrP is upregulated in primary breast cancers and identifies a direct prolactin-Stat5-PTHrP axis that is progressively lost in more aggressive tumors.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Núcleo Celular/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Núcleo Celular/genética , Modelos Animais de Doenças , Epitélio/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Proteína Relacionada ao Hormônio Paratireóideo/genética , Prognóstico , Prolactina/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT5/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
7.
Cancer Cell ; 31(2): 194-207, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28196594

RESUMO

Refractoriness of solid tumors, including colorectal cancers (CRCs), to immunotherapies is attributed to the immunosuppressive tumor microenvironment that protects malignant cells from cytotoxic T lymphocytes (CTLs). We found that downregulation of the type I interferon receptor chain IFNAR1 occurs in human CRC and mouse models of CRC. Downregulation of IFNAR1 in tumor stroma stimulated CRC development and growth, played a key role in formation of the immune-privileged niche, and predicted poor prognosis in human CRC patients. Genetic stabilization of IFNAR1 improved CTL survival and increased the efficacy of the chimeric antigen receptor T cell transfer and PD-1 inhibition. Likewise, pharmacologic stabilization of IFNAR1 suppressed tumor growth providing the rationale for upregulating IFNAR1 to improve anti-cancer therapies.


Assuntos
Neoplasias Colorretais/imunologia , Receptor de Interferon alfa e beta/fisiologia , Animais , Sobrevivência Celular , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Regulação para Baixo , Humanos , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Interferon alfa e beta/análise , Receptor de Interferon alfa e beta/genética , Transdução de Sinais , Linfócitos T Citotóxicos/fisiologia , Microambiente Tumoral
8.
Cancer Epidemiol Biomarkers Prev ; 23(11): 2328-37, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25304930

RESUMO

BACKGROUND: Although colorectal cancer is a disease characterized by sequential accumulation of mutations in epithelial cells, mechanisms leading to genomic vulnerability contributing to tumor initiation remain undefined. GUCY2C has emerged as an intestine-specific tumor suppressor controlling epithelial homeostasis through circuits canonically disrupted in cancer. Surprisingly, the GUCY2C tumor suppressor is universally overexpressed by human colorectal cancer cells. This apparent paradox likely reflects silencing of GUCY2C through loss of its paracrine hormone guanylin. Here, we quantified expression of guanylin mRNA and protein in tumors and normal epithelia from patients with colorectal cancer. METHODS: Guanylin mRNA was quantified in tumors and normal adjacent epithelia from 281 patients by the reverse transcriptase-polymerase chain reaction. Separately, the guanylin protein was quantified by immunohistochemistry in 54 colorectal tumors and 30 specimens of normal intestinal epithelium. RESULTS: Guanylin mRNA in colorectum varied more than a 100-fold across the population. Guanylin mRNA was reduced 100- to 1,000-fold in >85% of tumors compared with matched normal adjacent mucosa (P < 0.001). Loss of guanylin mRNA was greatest in tumors from patients <50 years old (P < 0.005) and with the highest expression in normal adjacent mucosa (Spearman correlation coefficient = 0.61; P < 0.001). In a separate validation cohort, guanylin protein was detected in all 30 normal colorectal mucosa specimens, but in none of 54 colorectal tumors. CONCLUSIONS: Colorectal cancer may initiate as a disease of paracrine hormone insufficiency through loss of guanylin expression, silencing the GUCY2C tumor suppressor and disrupting homeostatic mechanisms regulating colorectal epithelia cells. IMPACT: Intestinal tumorigenesis may be prevented by oral GUCY2C hormone replacement therapy.


Assuntos
Neoplasias Colorretais/química , Hormônios Gastrointestinais/análise , Hormônios Gastrointestinais/genética , Mucosa Intestinal/química , Peptídeos Natriuréticos/análise , Peptídeos Natriuréticos/genética , RNA Mensageiro/análise , Fatores Etários , Idoso , Colo/química , Neoplasias Colorretais/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Comunicação Parácrina , Estudos Prospectivos , Receptores de Enterotoxina , Receptores Acoplados a Guanilato Ciclase/metabolismo , Receptores de Peptídeos/metabolismo , Reto/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA