Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 297: 113410, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346396

RESUMO

This study evaluates water quality, concentrations and health risks of heavy metals (HMs) in eight major lakes in Kenya namely Naivasha, Elementaita, Nakuru, Baringo, Bogoria, Turkana, Victoria and Magadi. Water quality was assessed using water quality index (WQI) and pollution evaluation index (PEI), while human health risk associated with ingestion and dermal contact of HMs was assessed using hazard quotients (HQ) and hazard index (HI). Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used to deduce the probable sources of the HMs. The average concentration of aluminium (Al), molybdenum (Mo), manganese (Mn), nickel (Ni), arsenic (As), zinc (Zn), selenium (Se), lead (Pb), chromium (Cr), mercury (Hg), cobalt (Co) and cadmium (Cd) in the eight lakes was 824.6, 66.1, 58.9, 16.2, 8.40, 7.84, 6.91, 4.65, 2.66, 0.86, 0.78 and 0.46, respectively, all in µg/L. Al, Mn, As, and Mo were relatively high in Rift Valley lakes and exceeded the maximum permissible levels for drinking water. Notably, high HM concentrations were recorded at the entry points of rivers and areas with high human activities. Lake Magadi had the highest average WQI of 158.8 followed by lake Elementaita (128.4), Bogoria (79.5), Nakuru (73.3), Turkana (57.6), Victoria (52.3), Baringo (42.6) and Naivasha (25.5). Lake Magadi also had the highest average PEI of 40.0 followed by Elementaita (30.1), Bogoria (16.2), Nakuru (15.7), Victoria (10.8), Baringo (9.57), Turkana (9.53) and Naivasha (5.12). Based on WQI, Lake Naivasha water was excellent for drinking, Lake Victoria, Turkana, Baringo, Nakuru, and Bogoria had good water, but water from Lake Elementaita and Magadi was of poor quality. PEI classified the lakes as minimally polluted except Lake Magadi. Multivariate analysis concluded that Pb, Cr, Ni and Se had anthropogenic sources, mainly agricultural and urban runoff, but other HMs had natural influence. Although the HMs did not pose any health risks through dermal contact, HQingestion was >1 for adults and children consuming water from Lake Elementaita, Nakuru, Bogoria and Magadi due to non-carcinogenic risks associated with As, Zn and Mo. These results are important for formulating the necessary remediation policies to improve water quality in the eight lakes.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adulto , Criança , China , Monitoramento Ambiental , Humanos , Quênia , Lagos , Metais Pesados/análise , Análise Multivariada , Medição de Risco , Poluentes Químicos da Água/análise , Qualidade da Água
2.
Environ Monit Assess ; 192(3): 167, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32030474

RESUMO

Mountains are the preferred sites for studying long-range atmospheric transportation and deposition of heavy metals, due to their isolation and steep temperature decrease that favors cold trapping and condensation of particulate forms of heavy metals. Any enrichment of heavy metals in mountains is presumed to primarily occur through atmospheric deposition. In this particular study, we assessed the status of 27 subsurface soils collected along two elevation gradients of Mt. Kenya using enrichment factors (EFs) as the ecological risk assessments. The collected soils were analyzed for total organic carbon, zinc (Zn), iron (Fe), manganese (Mn), and copper (Cu). The mean concentration of Mn, Fe, Zn, and Cu was 0.376 mg/kg, 47.6 mg/kg, 12.3 mg/kg, and 4.88 mg/kg in Chogoria and 0.560 mg/kg, 113 mg/kg, 12.7 mg/kg, and 2.70 mg/kg in Naro Moru respectively. These concentrations were below the US-EPA maximum permissible levels for soils, implying that the levels recorded had low toxicity. Meanwhile, the mean enrichment factors for Mn, Cu, and Zn were 0.447, 131, and 78.8 in Chogoria and 0.463, 38.9, and 53.0 in Naro Moru respectively. This implied that Zn and Cu in Chogoria sites were extremely enriched, while in Naro Moru, enrichment levels ranged from significant to extreme. However, Mn was found to have minimal enrichment in all the sites. Lower montane forest and bamboo zone recorded relatively high enrichment due to distance from source of pollution. Ericaceous zone also had high mean enrichment due to influence of wind which favors higher deposition at mid-elevations.


Assuntos
Cobre , Manganês , Metais Pesados , Poluentes do Solo , Zinco , Cobre/análise , Monitoramento Ambiental , Quênia , Manganês/análise , Solo , Poluentes do Solo/análise , Tanzânia , Zinco/análise
3.
Environ Toxicol Chem ; 42(10): 2105-2118, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37377343

RESUMO

Studies investigating microplastics, pharmaceuticals, and pesticides as contaminants of emerging concern (CECs) in surface water sources in Kenya are reviewed. Contaminants of emerging concern are chemicals that have recently been discovered that may pose a threat to the environment, aquatic life, and human life. Microplastics in surface waters range from 1.56 to as high as 4520 particles/m3 , with high concentrations recorded in coastal waters. The dominant microplastics are fibers, fragments, and films, with foams, granules, and pellets making up only a small percentage. The main source of pharmaceuticals in water sources is not wastewater-treatment plants but rather raw untreated sewage because high concentrations are found near informal settlements with poor sewage connectivity. Antibiotics are detected in the range of the limit of quantification to 320 µg/L, with sulfamethoxazole, trimethoprim, and ciprofloxacin being the most abundant antibiotics. The high frequency of detection is attributed to the general misuse of antibiotics in the country. A health risk assessment indicated that only ciprofloxacin and acetaminophen posed noncarcinogenic health risks in the Ndarugo River and Mombasa periurban creeks, respectively. Similarly, the detection of antiretroviral drugs, mainly lamivudine, nevirapine, and zidovudine, is associated with human immunodeficiency virus prevalence in Kenya. In the Lake Naivasha, Nairobi River, and Lake Victoria basins, frequently detected organochloride pesticides (OCPs) are methoxychlor, alachlor, endrin, dieldrin, endosulfan, endosulfan sulfate, α-hexachlorocyclohexane (α-HCH), γ-HCH, and dichlorodiphenyltrichloroethane (DDT), some of which occur above permissible concentrations. The presence of DDT in some sites translates to illegal use or historical application. The majority of individual OCPs posed no noncarcinogenic health risk, except dieldrin and aldrin which had a hazard quotient >1 in two sites. Therefore, more surveying and regular monitoring in different regions in Kenya concerning CECs is essential to determine the spatial variability and effective measures to be taken to reduce pollution. Environ Toxicol Chem 2023;42:2105-2118. © 2023 SETAC.

4.
Environ Sci Pollut Res Int ; 28(46): 66012-66025, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34327642

RESUMO

Contamination of nine heavy metals (HMs) Zn, Pb, Cu, Cd, As, Co, Cr, Mo, and Ni in agricultural, urban, and wetland soils from Western and Rift Valley parts of Kenya was assessed using improved weighted index (IWI) and pollution loading index (PLI). Non-carcinogenic risks posed by the HMs were assessed using hazard quotients (HQ) and hazard index (HI), while carcinogenic risks were assessed using cancer risks (CR) and total cancer risks (TCR). The average concentration of Zn, Cr, Ni, Pb, Co, Cu, As, Mo, and Cd was 94.7 mg/kg, 43.6 mg/kg, 22.3 mg/kg, 21.0 mg/kg, 19.8 mg/kg, 18.0 mg/kg, 16.3 mg/kg, 1.83 mg/kg, and 1.16 mg/kg, respectively. IWI ranged from 0.57 to 6.04 and categorized 6.82% of the study sites as not polluted, 27.3% as slightly polluted, 43.2% as moderately polluted, and 22.7% as seriously polluted. PLI ranged from 0.38 to 3.95 and classified 15.9% of the sites as not polluted, 61.4% as slightly polluted, 20.5% as moderately polluted, and only 2.3% as seriously polluted. Wetlands retained more HMs from both urban and agricultural runoff and were therefore the most polluted. The heavy metals did not pose any risks via inhalation and dermal contact, but HQingestion for As for children was >1 in 2.3% of the sites studied. CR via ingestion and TCR for As were above the allowable limits for children and adults indicating high risks of cancer. Intensive agriculture and urbanization should be closely monitored to prevent further HM pollution.


Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Agricultura , Criança , China , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Áreas Alagadas
5.
J Environ Health Sci Eng ; 17(1): 63-73, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31321038

RESUMO

BACKGROUND: The present study investigated pollution in surface soils of five dominant land use types in central Kenya. The mean concentration of heavy metals (Zn, Hg, Cd, Cu, Cr, As and Ni) in (mg/kg) and two organochlorine pesticides (DDTs and HCHs) (µg/kg) were determined. METHOD: Heavy metal contamination and potential ecological risk using the Nemerow pollution index and Hakanson ecological risk index respectively were used in examining pollution level. With the help of multivariate analysis sources of heavy metal pollution were identified which were mainly from anthropogenic activities. Notably, heavy metal concentration in our study was compared to other regions within the country, results showed regional variation. Total levels of DDTs, HCHs pesticide and their constituent isomers in the surface soil were determined by a gas chromatography (GC-µECD). RESULTS: Pollution level in all land use areas according to Nemerow pollution index indicated low pollution status. Notably, in all land use areas the pollution level decreased in the following order Industrial land>Peri-urban>Agriculture land>Forest>River. In addition, heavy metals had low risks values according to Hakanson ecological risk index ranging from 0.01 to 0.58, with Hg having the highest mean value of 0.58. As expected, organochlorine pesticide were higher in agricultural land use, DDTs levels were comparatively higher than HCHs levels. Results on DDTs ratio (p, p'-DDT/p, p'-DDD + p, p'-DDE) were < 1 in all land use types which showed that their residues originated from historical sources. Lower α/ γ HCH ratio in forest and peri-urban land uses however indicated current input of lindane. Correlation analysis showed significant relationship between TOC and HCHs only. CONCLUSION: When compared to recent study done in agricultural soil (Nairobi surroundings), present study of OCPs (DDTs and HCHs) concentration in central Kenya was relatively high. The quality of soil in Central Kenya was classified as considerably polluted by OCPs but low polluted by heavy metals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA