RESUMO
By means of molecular dynamics simulation, the process of the microphase separation in the melts of diblock helix-coil copolymers comprising a flexible and a helical block was studied. The resulting microstructures were examined, and the spatial distribution of the blocks and molecular packing were investigated. The phase diagram was built in terms of the fraction of the helical block and the incompatibility parameter of the blocks. The comparison of the diagrams for helix-coil and the classic coil-coil copolymer blends was carried out. It was shown that the total region where the ordering into distinctive microstructures takes place is similar for both diagrams. But for the helix-coil copolymers the area of the cylinders splits into the region of those with circular and elliptical cross-sections; the bicontinuous phase area is much wider; in the lamellar phases, the helical blocks were oriented precisely perpendicular to the lamellar interface, forming a cohesive interlocked structure of densely packed helices.
RESUMO
The adsorption of macromolecules with amphiphilic monomer units at the liquid-liquid interface was studied. The amphiphilic structure of monomer units with groups selectively interacting with α and ß liquids was described by the A-graft-B dumbbell model. The calculations were performed for the symmetrical interaction of A and B groups with liquids, different selectivity parameters ξ and degree of polymerization N. The simulations indicate a three-step adsorption scenario, including non-adsorbed, weak and strong localization states. It was shown that the adsorption of (A-graft-B)N macromolecules obeys scaling laws developed to describe the adsorption of the alternating (AB)N copolymer at the liquid-liquid interface with critical selectivity parameter ξc of transition into the weak localization state depending on the degree of polymerization as N-1/5; critical selectivity parameter ξ∞ of transition to the strong localization regime non-depending on the degree of polymerization; and relative change of perpendicular Rz radius of gyration varying as a power function of ξN1/5: Rz(ξ)/Rz(0) â¼ (ξN1/5)ρ and ρ = -2ν/(1 - v). Meanwhile, (A-graft-B)N macromolecules have much lower ξc and ξ∞ values and thus are more prospective for practical applications.
RESUMO
In general, bio-macromolecules are composed of hydrophilic and hydrophobic moieties and are confined within small cavities, such as cell membranes and intracellular organelles. Here, we studied the self-organization of macromolecules having groups with different affinities to solvents under spherical nano-scale confinement by means of computer modeling. It is shown that depending on the interaction parameters of monomer units composed of side- and main-chain monomer groups along a single linear macromolecule and on cavity size, such amphiphilic polymers undergo the conformational transitions between hollow nanospheres, rod-like and folded cylindrical structures, and a necklace conformation with and without a particular ordering of beads. The diagram of the conformations in the variables the incompatibility parameter of monomer units and the cavity radius is constructed.
Assuntos
Interações Hidrofóbicas e Hidrofílicas , Substâncias Macromoleculares/química , Nanopartículas/química , Modelos Moleculares , Conformação Molecular , TermodinâmicaRESUMO
HYPOTHESIS: At selective liquid-liquid interface, amphiphilic homopolymers, having groups with different affinity for the liquids in each monomer unit, would demonstrate higher occupation of the interfacial layer than copolymers with various distributions of groups and be advantageous as interface stabilizers. EXPERIMENTS: By means of Langevin dynamics computer simulation, conformations of multiple chains of amphiphilic macromolecules adsorbed at the liquid-liquid interface were studied. Monomer units having different affinity for the liquids were distributed variously along the polymer chains. Homopolymers, amphiphilic at the level of an individual monomer unit, and copolymers with random, altermating and multiblock distribution of groups were considered. The surface coverage, structure of the layer, and spatial distribution of monomer units were investigated depending on the polymer concentration. FINDINGS: Compared to copolymers with random, alternating and multiblock distributions of the groups, the interfacial layer concentration of amphiphilic homopolymer is about 1.5 times higher, the adsorbed layer is remarkably thinner, has membrane-like structure and is asymmetric with respect to interface boundary. Also, the adsorbed amphiphilic homopolymers form fewer loops and tails, most located on one side of the interface. This combination of properties is promising for practical application in modern self-assembling molecular devices.
RESUMO
By means of computer simulation and analytical theory, we first demonstrated that the interpolyelectrolyte complexes in dilute solution can spontaneously form hollow spherical particles with thin continuous shells (vesicles) or with porous shells (perforated vesicles) if the polyions forming the complex differ in their affinity for the solvent. The solvent was considered good for the nonionic groups of one macroion and its quality was varied for the nonionic groups of the other macroion. It was found that if the electrostatic interactions are weak compared to the attraction induced by the hydrophobicity of the monomer units, the complex in poor solvent tends to form "dense core-loose shell" structures of different shapes. The strong electrostatic interactions favor the formation of the layered, the hollow, and the filled structured morphologies with the strongly segregated macroions. Vesicles with perforated walls were distinguished as the intermediate between the vesicular and the structured solid morphologies. The order parameter based on the spherical harmonics expansion was introduced to calculate the pore distribution in the perforated vesicles depending on the solvent quality. The conditions of the core-shell and hollow vesicular-like morphologies formation were determined theoretically via the calculations of their free energy. The results of the simulation and theoretical approaches are in good agreement.
RESUMO
Presents the results of measuring the traits of intensifying X-ray screens, made with the use of following luminescent solids: Y2O2S:Tb (P-14-1, P-14-2), BaFCI:Eu (P-15-1), CaWO4 (P-420, P-420-1). Summurizes the experience in the application of the screens EU-I1, EU-I5 and EU-IB1 in the All-Union Scientific Center on Surgery, the USSR Academy of Medical Sciences.