Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 629(8011): 311-316, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720040

RESUMO

A boson sampler implements a restricted model of quantum computing. It is defined by the ability to sample from the distribution resulting from the interference of identical bosons propagating according to programmable, non-interacting dynamics1. An efficient exact classical simulation of boson sampling is not believed to exist, which has motivated ground-breaking boson sampling experiments in photonics with increasingly many photons2-12. However, it is difficult to generate and reliably evolve specific numbers of photons with low loss, and thus probabilistic techniques for postselection7 or marked changes to standard boson sampling10-12 are generally used. Here, we address the above challenges by implementing boson sampling using ultracold atoms13,14 in a two-dimensional, tunnel-coupled optical lattice. This demonstration is enabled by a previously unrealized combination of tools involving high-fidelity optical cooling and imaging of atoms in a lattice, as well as programmable control of those atoms using optical tweezers. When extended to interacting systems, our work demonstrates the core abilities required to directly assemble ground and excited states in simulations of various Hubbard models15,16.

2.
Nature ; 556(7700): 223-226, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29643486

RESUMO

From dice to modern electronic circuits, there have been many attempts to build better devices to generate random numbers. Randomness is fundamental to security and cryptographic systems and to safeguarding privacy. A key challenge with random-number generators is that it is hard to ensure that their outputs are unpredictable1-3. For a random-number generator based on a physical process, such as a noisy classical system or an elementary quantum measurement, a detailed model that describes the underlying physics is necessary to assert unpredictability. Imperfections in the model compromise the integrity of the device. However, it is possible to exploit the phenomenon of quantum non-locality with a loophole-free Bell test to build a random-number generator that can produce output that is unpredictable to any adversary that is limited only by general physical principles, such as special relativity1-11. With recent technological developments, it is now possible to carry out such a loophole-free Bell test12-14,22. Here we present certified randomness obtained from a photonic Bell experiment and extract 1,024 random bits that are uniformly distributed to within 10-12. These random bits could not have been predicted according to any physical theory that prohibits faster-than-light (superluminal) signalling and that allows independent measurement choices. To certify and quantify the randomness, we describe a protocol that is optimized for devices that are characterized by a low per-trial violation of Bell inequalities. Future random-number generators based on loophole-free Bell tests may have a role in increasing the security and trust of our cryptographic systems and infrastructure.

3.
Phys Rev Lett ; 128(16): 160503, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35522486

RESUMO

We propose and demonstrate a protocol for high-fidelity indirect readout of trapped ion hyperfine qubits, where the state of a ^{9}Be^{+} qubit ion is mapped to a ^{25}Mg^{+} readout ion using laser-driven Raman transitions. By partitioning the ^{9}Be^{+} ground-state hyperfine manifold into two subspaces representing the two qubit states and choosing appropriate laser parameters, the protocol can be made robust to spontaneous photon scattering errors on the Raman transitions, enabling repetition for increased readout fidelity. We demonstrate combined readout and back-action errors for the two subspaces of 1.2_{-0.6}^{+1.1}×10^{-4} and 0_{-0}^{+1.9}×10^{-5} with 68% confidence while avoiding decoherence of spectator qubits due to stray resonant light that is inherent to direct fluorescence detection.

4.
Phys Rev Lett ; 115(25): 250402, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26722906

RESUMO

We present a loophole-free violation of local realism using entangled photon pairs. We ensure that all relevant events in our Bell test are spacelike separated by placing the parties far enough apart and by using fast random number generators and high-speed polarization measurements. A high-quality polarization-entangled source of photons, combined with high-efficiency, low-noise, single-photon detectors, allows us to make measurements without requiring any fair-sampling assumptions. Using a hypothesis test, we compute p values as small as 5.9×10^{-9} for our Bell violation while maintaining the spacelike separation of our events. We estimate the degree to which a local realistic system could predict our measurement choices. Accounting for this predictability, our smallest adjusted p value is 2.3×10^{-7}. We therefore reject the hypothesis that local realism governs our experiment.

5.
Opt Express ; 22(3): 3244-60, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663616

RESUMO

We measure second- and third-order temporal coherences, g((2))(τ) and g((3))(τ1,τ2), of an optically excited single-photon source: an InGaAs quantum dot in a microcavity pedestal. Increasing the optical excitation power leads to an increase in the measured count rate, and also an increase in multi-photon emission probability. We show that standard measurements of g((2)) provide limited information about this multi-photon probability, and that more information can be gained by simultaneously measuring g((3)). Experimental results are compared with a simple theoretical model to show that the observed antibunchings are consistent with an incoherent addition of two sources: 1) an ideal single-photon source that never emits multiple photons and 2) a background cavity emission having Poissonian photon number statistics. Spectrally resolved cross-correlation measurements between quantum-dot and cavity modes show that photons from these two sources are largely uncorrelated, further supporting the model. We also analyze the Hanbury Brown-Twiss interferometer implemented with two or three "click" detectors, and explore the conditions under which it can be used to accurately measure g((2))(τ) and g((3))(τ1,τ2).

6.
Phys Rev A (Coll Park) ; 107(4)2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37965435

RESUMO

Joint Gaussian measurements of two quantum systems are important for quantum communication between remote parties and are often used in continuous-variable teleportation or entanglement-swapping protocols. Many of the errors in real-world implementations can be modeled by independent Gaussian error channels acting prior to measurement. In this work we study independent single-mode Gaussian error channels on two modes A and B that take place prior to a joint Gaussian measurement. We determine the set of pairs of such channels that render all Gaussian measurements separable, and therefore unsuitable for entanglement swapping or teleportation of arbitrary input states. For example, if the error channels are loss with parameters lA,lB followed by added noise with parameters nA,nB then all Gaussian measurements are separable if and only if lA+lB+nA+nB≥1.

7.
Opt Express ; 19(24): 24434-47, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22109470

RESUMO

We characterize a periodically poled KTP crystal that produces an entangled, two-mode, squeezed state with orthogonal polarizations, nearly identical, factorizable frequency modes, and few photons in unwanted frequency modes. We focus the pump beam to create a nearly circular joint spectral probability distribution between the two modes. After disentangling the two modes, we observe Hong-Ou-Mandel interference with a raw (background corrected) visibility of 86% (95%) when an 8.6 nm bandwidth spectral filter is applied. We measure second order photon correlations of the entangled and disentangled squeezed states with both superconducting nanowire single-photon detectors and photon-number-resolving transition-edge sensors. Both methods agree and verify that the detected modes contain the desired photon number distributions.


Assuntos
Iluminação/instrumentação , Refratometria/instrumentação , Telecomunicações/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
8.
Science ; 372(6542): 622-625, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33958475

RESUMO

Quantum entanglement of mechanical systems emerges when distinct objects move with such a high degree of correlation that they can no longer be described separately. Although quantum mechanics presumably applies to objects of all sizes, directly observing entanglement becomes challenging as masses increase, requiring measurement and control with a vanishingly small error. Here, using pulsed electromechanics, we deterministically entangle two mechanical drumheads with masses of 70 picograms. Through nearly quantum-limited measurements of the position and momentum quadratures of both drums, we perform quantum state tomography and thereby directly observe entanglement. Such entangled macroscopic systems are poised to serve in fundamental tests of quantum mechanics, enable sensing beyond the standard quantum limit, and function as long-lived nodes of future quantum networks.

9.
Science ; 364(6443): 875-878, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31147517

RESUMO

Large-scale quantum computers will require quantum gate operations between widely separated qubits. A method for implementing such operations, known as quantum gate teleportation (QGT), requires only local operations, classical communication, and shared entanglement. We demonstrate QGT in a scalable architecture by deterministically teleporting a controlled-NOT (CNOT) gate between two qubits in spatially separated locations in an ion trap. The entanglement fidelity of our teleported CNOT is in the interval (0.845, 0.872) at the 95% confidence level. The implementation combines ion shuttling with individually addressed single-qubit rotations and detections, same- and mixed-species two-qubit gates, and real-time conditional operations, thereby demonstrating essential tools for scaling trapped-ion quantum computers combined in a single device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA