Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomech ; 47(9): 1964-8, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24484642

RESUMO

Tendon is a strong connective tissue that transduces muscle-generated forces into skeletal motion. In fulfilling this role, tendons are subjected to repeated mechanical loading and high stress, which may result in injury. Tissue engineering with stem cells offers the potential to replace injured/damaged tissue with healthy, new living tissue. Critical to tendon tissue engineering is the induction and guidance of stem cells towards the tendon phenotype. Typical strategies have relied on adult tissue homeostatic and healing factors to influence stem cell differentiation, but have yet to achieve tissue regeneration. A novel paradigm is to use embryonic developmental factors as cues to promote tendon regeneration. Embryonic tendon progenitor cell differentiation in vivo is regulated by a combination of mechanical and chemical factors. We propose that these cues will guide stem cells to recapitulate critical aspects of tenogenesis and effectively direct the cells to differentiate and regenerate new tendon. Here, we review recent efforts to identify mechanical and chemical factors of embryonic tendon development to guide stem/progenitor cell differentiation toward new tendon formation, and discuss the role this work may have in the future of tendon tissue engineering.


Assuntos
Células-Tronco/citologia , Tendões/embriologia , Engenharia Tecidual , Animais , Diferenciação Celular , Desenvolvimento Embrionário , Humanos , Regeneração , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA