Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Ecol ; 20(1): 31, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32450835

RESUMO

BACKGROUND: The long-tailed duck (Clangula hyemalis) was categorized as ´Vulnerable` by the IUCN after a study revealed a rapid wintering population decline of 65% between 1992-1993 and 2007-2009 in the Baltic Sea. As knowledge about the European long-tailed duck's life cycle and movement ecology is limited, we investigate its year-round spatiotemporal distribution patterns. Specifically, we aimed to identify the wintering grounds, timing of migration and staging of this population via light-level geolocation. RESULTS: Of the 48 female long-tailed ducks tagged on Kolguev Island (western Russian Arctic), 19 were recaptured to obtain data. After breeding and moulting at freshwater lakes, ducks went out to sea around Kolguev Island and to marine waters ranging from the White Sea to Novaya Zemlya Archipelago for 33 ± 10 days. After a rapid autumn migration, 18 of 19 birds spent their winter in the Baltic Sea and one bird in the White Sea, where they stayed for 212 ± 3 days. There, they used areas known to host long-tailed ducks, but areas differed among individuals. After a rapid spring migration in mid-May, the birds spent 23 ± 3 days at sea in coastal areas between the White Sea and Kolguev Island, before returning to their freshwater breeding habitats in June. CONCLUSIONS: The Baltic Sea represents the most important wintering area for female long-tailed ducks from Kolguev Island. Important spring and autumn staging areas include the Barents Sea and the White Sea. Climate change will render these habitats more exposed to human impacts in the form of fisheries, marine traffic and oil exploitation in near future. Threats that now operate in the wintering areas may thus spread to the higher latitude staging areas and further increase the pressure on long-tailed ducks.


Assuntos
Patos , Espécies em Perigo de Extinção , Animais , Regiões Árticas , Cruzamento , Feminino , Ilhas , Federação Russa , Especificidade da Espécie
2.
PLoS One ; 12(5): e0177790, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542340

RESUMO

Low pathogenic avian influenza virus can mutate to a highly pathogenic strain that causes severe clinical signs in birds and humans. Migratory waterfowl, especially ducks, are considered the main hosts of low pathogenic avian influenza virus, but the role of geese in dispersing the virus over long-distances is still unclear. We collected throat and cloaca samples from three goose species, Bean goose (Anser fabalis), Barnacle goose (Branta leucopsis) and Greater white-fronted goose (Anser albifrons), from their breeding grounds, spring stopover sites, and wintering grounds. We tested if the geese were infected with low pathogenic avian influenza virus outside of their wintering grounds, and analysed the spatial and temporal patterns of infection prevalence on their wintering grounds. Our results show that geese were not infected before their arrival on wintering grounds. Barnacle geese and Greater white-fronted geese had low prevalence of infection just after their arrival on wintering grounds in the Netherlands, but the prevalence increased in successive months, and peaked after December. This suggests that migratory geese are exposed to the virus after their arrival on wintering grounds, indicating that migratory geese might not disperse low pathogenic avian influenza virus during autumn migration.


Assuntos
Migração Animal , Cruzamento , Gansos/fisiologia , Gansos/virologia , Vírus da Influenza A/fisiologia , Estações do Ano , Animais , Influenza Aviária/transmissão , Influenza Aviária/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA