Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Dev Biol ; 485: 9-23, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35227671

RESUMO

Transforming Growth Factor Beta 1 (TGFß1) is a multifunctional cytokine that regulates proliferation, apoptosis, and epithelial-mesenchymal transition of epithelial cells. While its role in cancer is well studied, less is known about TGFß1 and regulation of epithelial development. To address this, we deleted TGFß1 in basal keratinocytes of stratified squamous epithelia. Newborn mice with a homozygous TGFß1 deletion had significant defects in proliferation and differentiation of the epidermis and oral mucosa, and died shortly after birth. Hair follicles were sparse in TGFß1 depleted skin and had delayed development. Additionally, the Wnt pathway transcription factor LEF1 was reduced in hair follicle bulbs and nearly absent from the basal epithelial layer. Hemizygous knockout mice survived to adulthood but were runted and had sparse coats. The skin of these mice had irregular hair follicle morphology and aberrant hair cycle progression, as well as abnormally high melanin expression and delayed melanocyte migration. In contrast to newborn TGFß1 null mice, the epidermis was hyperproliferative, acanthotic and inflamed. Expression of p63, a master regulator of stratified epithelial identity, proliferation and differentiation, was reduced in TGFß1 null newborn epidermis but expanded in the postnatal acanthotic epidermis of TGFß1 hemizygous mice. Thus, TGFß1 is both essential and haploinsufficient with context dependent roles in stratified squamous epithelial development and homeostasis.


Assuntos
Carcinoma de Células Escamosas , Queratinócitos , Animais , Carcinoma de Células Escamosas/metabolismo , Diferenciação Celular , Epiderme/metabolismo , Epitélio/metabolismo , Folículo Piloso , Melanócitos , Camundongos
2.
Dev Biol ; 492: 59-70, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36179879

RESUMO

The IRE1α-XBP1s signaling branch of the unfolded protein response is a well-characterized survival pathway that allows cells to adapt to and resolve endoplasmic reticulum stress. Recent data has broadened our understanding of IRE1α-XBP1s signaling beyond a stress response and revealed a physiological mechanism required for the differentiation and maturation of a wide variety of cell types. Here we provide evidence that the IRE1α-XBP1s signaling pathway is required for the proliferation and maturation of basal keratinocytes in the mouse tongue and esophageal epithelium. Mice with conditional targeted deletion of either Ire1α or Xbp1 in keratin 14 expressing basal keratinocytes displayed severe thinning of the lingual and esophageal mucosa that rendered them unable to eat. In IRE1α null epithelium harvested at an earlier timepoint, genes regulating cell proliferation, cell-cell adhesion, and keratinization were significantly downregulated; indirect immunofluorescence revealed fewer proliferating basal keratinocytes, downregulation of E-cadherin, and thinning of the loricrin-positive granular and cornified layers. The number of Tp63-positive basal keratinocytes was reduced in the absence of IRE1α, and expression of the Wnt pathway transcription factor LEF1, which is required for the proliferation of lingual transit amplifying cells, was also significantly downregulated at the transcript and protein level. Together these results reveal an essential role for IRE1α-XBP1s in the maintenance of the stratified squamous epithelial tissue of the tongue and esophagus.


Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Camundongos , Animais , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas/genética , Estresse do Retículo Endoplasmático/genética , Esôfago , Língua/metabolismo
3.
Mol Carcinog ; 61(10): 958-971, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35975910

RESUMO

Transforming Growth Factor ß1 (TGFß1) is a critical regulator of tumor progression in response to HRas. Recently, TGFß1 has been shown to trigger ER stress in many disease models; however, its role in oncogene-induced ER stress is unclear. Oncogenic HRas induces the unfolded protein response (UPR) predominantly via the Inositol-requiring enzyme 1α (IRE1α) pathway to initiate the adaptative responses to ER stress, with importance for both proliferation and senescence. Here, we show a role of the UPR sensor proteins IRE1α and (PKR)-like endoplasmic reticulum kinase (PERK) to mediate the tumor-suppressive roles of TGFß1 in mouse keratinocytes expressing mutant forms of HRas. TGFß1 suppressed IRE1α phosphorylation and activation by HRas both in in vitro and in vivo models while simultaneously activating the PERK pathway. However, the increase in ER stress indicated an uncoupling of ER stress and IRE1α activation by TGFß1. Pharmacological and genetic approaches demonstrated that TGFß1-dependent dephosphorylation of IRE1α was mediated by PERK through RNA Polymerase II Associated Protein 2 (RPAP2), a PERK-dependent IRE1α phosphatase. In addition, TGFß1-mediated growth arrest in oncogenic HRas keratinocytes was partially dependent on PERK-induced IRE1α dephosphorylation and inactivation. Together, these results demonstrate a critical cross-talk between UPR proteins that is important for TGFß1-mediated tumor suppressive responses.


Assuntos
Endorribonucleases , RNA Polimerase II , Animais , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Inositol , Queratinócitos/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases/genética , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Resposta a Proteínas não Dobradas , eIF-2 Quinase/metabolismo
4.
Langmuir ; 38(32): 9833-9843, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35916504

RESUMO

In this study, we utilized selectively modified, biodegradable polymer-based polyplexes to deliver custom, exogenous miR-148b mimics to induce apoptosis in human lung cancer (A549) cells. The gene regulatory effects of the payload miRNA mimics (miR-148b-3p) were first evaluated through bioinformatic analyses to uncover specific gene targets involved in critical carcinogenic pathways. Hyperbranched poly(ß amino ester) polyplexes (hPBAE) loaded with custom miR-148b mimics were then developed for targeted therapy. When evaluated in vitro, these hPBAE-based polyplexes sustained high intracellular uptake, low cytotoxicity, and efficient escape from endosomes to deliver functionally intact miRNA mimics to the cytosol. High-resolution confocal microscopy revealed successful intracellular uptake, cell viability was assessed through qualitative fluorescence microscopy and fluorescence-based DNA quantification, and successful cytosolic delivery of intact miRNA mimics was evaluated using real-time polymerase chain reaction (RT-PCR) to demonstrate target gene knockdown. The hPBAE-miRNA mimic polyplexes were shown to induce apoptosis among A549 cells through direct modulation of intracellular protein expression, targeting multiple potential carcinogenic pathways at the gene level. These results indicated that spatially controlled miR-148b mimic delivery can promote efficient cancer cell death in vitro and may lead to an enhanced therapeutic design for in vivo application.


Assuntos
Ésteres , MicroRNAs , Células A549 , Apoptose , Proliferação de Células , Humanos , MicroRNAs/genética , Poli A , Polímeros
5.
Development ; 144(8): 1498-1509, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28289136

RESUMO

Maintenance of specialized epidermis requires signals from the underlying mesenchyme; however, the specific pathways involved remain to be identified. By recombining cells from the ventral skin of the K14-PTHrP transgenic mice [which overexpress parathyroid hormone-related protein (PTHrP) in their developing epidermis and mammary glands] with those from wild type, we show that transgenic stroma is sufficient to reprogram wild-type keratinocytes into nipple-like epidermis. To identify candidate nipple-specific signaling factors, we compared gene expression signatures of sorted Pdgfrα-positive ventral K14-PTHrP and wild-type fibroblasts, identifying differentially expressed transcripts that are involved in WNT, HGF, TGFß, IGF, BMP, FGF and estrogen signaling. Considering that some of the growth factor pathways are targets for estrogen regulation, we examined the upstream role of this hormone in maintaining the nipple. Ablation of estrogen signaling through ovariectomy produced nipples with abnormally thin epidermis, and we identified TGFß as a negatively regulated target of estrogen signaling. Estrogen treatment represses Tgfß1 at the transcript and protein levels in K14-PTHrP fibroblasts in vitro, while ovariectomy increases Tgfb1 levels in K14-PTHrP ventral skin. Moreover, ectopic delivery of Tgfß1 protein into nipple connective tissue reduced epidermal proliferation. Taken together, these results show that specialized nipple epidermis is maintained by estrogen-induced repression of TGFß signaling in the local fibroblasts.


Assuntos
Envelhecimento/fisiologia , Comunicação Celular/efeitos dos fármacos , Células Epidérmicas , Estrogênios/farmacologia , Mesoderma/citologia , Mamilos/citologia , Animais , Biomarcadores/metabolismo , Reprogramação Celular , Colágeno/metabolismo , Biologia Computacional , Derme/citologia , Regulação para Baixo/genética , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Ovário/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(37): 9900-9905, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28847931

RESUMO

Oncogenic Ras causes proliferation followed by premature senescence in primary cells, an initial barrier to tumor development. The role of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in regulating these two cellular outcomes is poorly understood. During ER stress, the inositol requiring enzyme 1α (IRE1α) endoribonuclease (RNase), a key mediator of the UPR, cleaves Xbp1 mRNA to generate a potent transcription factor adaptive toward ER stress. However, IRE1α also promotes cleavage and degradation of ER-localized mRNAs essential for cell death. Here, we show that oncogenic HRas induces ER stress and activation of IRE1α. Reduction of ER stress or Xbp1 splicing using pharmacological, genetic, and RNAi approaches demonstrates that this adaptive response is critical for HRas-induced proliferation. Paradoxically, reduced ER stress or Xbp1 splicing promotes growth arrest and premature senescence through hyperactivation of the IRE1α RNase. Microarray analysis of IRE1α- and XBP1-depleted cells, validation using RNA cleavage assays, and 5' RACE identified the prooncogenic basic helix-loop-helix transcription factor ID1 as an IRE1α RNase target. Further, we demonstrate that Id1 degradation by IRE1α is essential for HRas-induced premature senescence. Together, our studies point to IRE1α as an important node for posttranscriptional regulation of the early Ras phenotype that is dependent on both oncogenic signaling as well as stress signals imparted by the tumor microenvironment and could be an important mechanism driving escape from Ras-induced senescence.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ribonucleases/metabolismo , Proteínas ras/genética , Animais , Apoptose/fisiologia , Proliferação de Células/fisiologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/fisiologia , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/genética , Inositol/metabolismo , Queratinócitos/citologia , Queratinócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/genética , Splicing de RNA , Estabilidade de RNA , RNA Mensageiro/metabolismo , Ribonucleases/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo , Proteínas ras/metabolismo
7.
Mol Carcinog ; 58(9): 1623-1630, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31041814

RESUMO

Cancer is associated with a number of conditions such as hypoxia, nutrient deprivation, cellular redox, and pH changes that result in accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) and trigger a stress response known as the unfolded protein response (UPR). The UPR is a conserved cellular survival mechanism mediated by the ER transmembrane proteins activating transcription factor 6, protein kinase-like endoplasmic reticulum kinase, and inositol-requiring enzyme 1α (IRE1α) that act to resolve ER stress and promote cell survival. IRE1α is a kinase/endoribonuclease (RNase) with multiple activities including unconventional splicing of the messenger RNA (mRNA) for the transcription factor X-Box Binding Protein 1 (XBP1), degradation of other mRNAs in a process called regulated IRE1α-dependent decay (RIDD) and activation of a pathway leading to c-Jun N-terminal kinase phosphorylation. Each of these outputs plays a role in the adaptive and cell death responses to ER stress. Many studies indicate an important role for XBP1 and RIDD functions in cancer and new studies suggest that these two functions of the IRE1α RNase can have opposing functions in the early and later stages of cancer pathogenesis. Finally, as more is learned about the context-dependent role of IRE1α in cancer development, specific small molecule inhibitors and activators of IRE1α could play an important role in counteracting the protective shield provided by ER stress signaling in cancer cells.


Assuntos
Endorribonucleases/genética , Regulação da Expressão Gênica/genética , Neoplasias/genética , Resposta a Proteínas não Dobradas/genética , Animais , Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/genética , Humanos , RNA Mensageiro/genética , Transdução de Sinais/genética
8.
Nat Genet ; 40(9): 1130-5, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19165927

RESUMO

Constitutive Hedgehog (Hh) signaling underlies several human tumors, including basal cell carcinoma (BCC) and basaloid follicular hamartoma in skin. Intriguingly, superficial BCCs arise as de novo epithelial buds resembling embryonic hair germs, collections of epidermal cells whose development is regulated by canonical Wnt/beta-catenin signaling. Similar to embryonic hair germs, human BCC buds showed increased levels of cytoplasmic and nuclear beta-catenin and expressed early hair follicle lineage markers. We also detected canonical Wnt/ beta-catenin signaling in epithelial buds and hamartomas from mice expressing an oncogene, M2SMO, leading to constitutive Hh signaling in skin. Conditional overexpression of the Wnt pathway antagonist Dkk1 in M2SMO-expressing mice potently inhibited epithelial bud and hamartoma development without affecting Hh signaling. Our findings uncover a hitherto unknown requirement for ligand-driven, canonical Wnt/ beta-catenin signaling for Hh pathway-driven tumorigenesis, identify a new pharmacological target for these neoplasms and establish the molecular basis for the well-known similarity between early superficial BCCs and embryonic hair germs.


Assuntos
Carcinoma Basocelular/genética , Proteínas Hedgehog/genética , Neoplasias Cutâneas/genética , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Linhagem da Célula , Células Epiteliais/metabolismo , Folículo Piloso/embriologia , Hamartoma/genética , Humanos , Camundongos , Proteínas Oncogênicas/genética , Transdução de Sinais
9.
J Biol Chem ; 289(29): 20102-19, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24898257

RESUMO

Endoplasmic reticulum (ER) stress and ER stress-associated unfolded protein response (UPR) can promote cancer cell survival, but it remains unclear whether they can influence oncogene-induced senescence. The present study examined the role of ER stress in senescence using oncogene-dependent models. Increased ER stress attenuated senescence in part by up-regulating phosphorylated protein kinase B (p-AKT) and decreasing phosphorylated extracellular signal-regulated kinase (p-ERK). A positive feed forward loop between p-AKT, ER stress, and UPR was discovered whereby a transient increase of ER stress caused reduced senescence and promotion of tumorigenesis. Decreased ER stress was further correlated with increased senescence in both mouse and human tumors. Interestingly, H-RAS-expressing Pparß/δ null cells and tumors having increased cell proliferation exhibited enhanced ER stress, decreased cellular senescence, and/or enhanced tumorigenicity. Collectively, these results demonstrate a new role for ER stress and UPR that attenuates H-RAS-induced senescence and suggest that PPARß/δ can repress this oncogene-induced ER stress to promote senescence in accordance with its role as a tumor modifier that suppresses carcinogenesis.


Assuntos
Senescência Celular/genética , Senescência Celular/fisiologia , Estresse do Retículo Endoplasmático , Genes ras , PPAR delta/metabolismo , PPAR beta/metabolismo , Fator 4 Ativador da Transcrição/genética , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Proteínas de Ligação a DNA/genética , Chaperona BiP do Retículo Endoplasmático , Expressão Gênica , Técnicas de Silenciamento de Genes , Genes p53 , Proteínas de Choque Térmico/genética , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos , Modelos Biológicos , PPAR delta/deficiência , PPAR delta/genética , PPAR beta/deficiência , PPAR beta/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Fatores de Transcrição de Fator Regulador X , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Resposta a Proteínas não Dobradas
10.
Carcinogenesis ; 35(4): 959-66, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24363069

RESUMO

Transforming growth factor beta 1 (TGFß1) is a pleiotropic cytokine in the skin that can function both as a tumor promoter and suppressor in chemically induced skin carcinogenesis, but the function in ultraviolet B (UVB) carcinogenesis is not well understood. Treatment of SKH1 hairless mice with the activin-like kinase 5 (ALK5) inhibitor SB431542 to block UVB-induced activation of cutaneous TGFß1 signaling suppressed skin tumor formation but did not alter tumor size or tumor cell proliferation. Tumors that arose in SB-treated mice after 30 weeks had significantly reduced percentage of IFNγ(+) tumor-infiltrating lymphocytes compared with control mice. SB431542 blocked acute and chronic UVB-induced skin inflammation and T-cell activation in the skin-draining lymph node (SDLN) and skin but did not alter UVB-induced epidermal proliferation. We tested the effect of SB431542 on migration of skin dendritic cell (DC) populations because DCs are critical mediators of T-cell activation and cutaneous inflammation. SB431542 blocked (i) UVB-induced Smad2 phosphorylation in dermal DC (dDC) and (ii) SDLN and ear explant migration of CD103(+) CD207(+) and CD207(-) skin DC subsets but did not affect basal or UV-induced migration of Langerhans cells. Mice expressing a dominant-negative TGFß type II receptor in CD11c(+) cells had reduced basal and UVB-induced SDLN migration of CD103(+) CD207(+) and CD207(-) DC subsets and a reduced percentage of CD86(high) dDC following UVB irradiation. Together, these suggest that TGFß1 signaling has a tumor-promoting role in UVB-induced skin carcinogenesis and this is mediated in part through its role in UVB-induced migration of dDC and cutaneous inflammation.


Assuntos
Células Dendríticas/citologia , Dermatite/complicações , Linfonodos/patologia , Neoplasias Induzidas por Radiação/etiologia , Transdução de Sinais , Neoplasias Cutâneas/etiologia , Fator de Crescimento Transformador beta1/metabolismo , Raios Ultravioleta , Animais , Citometria de Fluxo , Masculino , Camundongos , Camundongos Pelados , Camundongos Transgênicos , Neoplasias Induzidas por Radiação/metabolismo , Neoplasias Induzidas por Radiação/patologia , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Proteínas Smad/metabolismo
11.
Biomolecules ; 14(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38927010

RESUMO

Nuclear hormone receptors exist in dynamic equilibrium between transcriptionally active and inactive complexes dependent on interactions with ligands, proteins, and chromatin. The present studies examined the hypothesis that endogenous ligands activate peroxisome proliferator-activated receptor-ß/δ (PPARß/δ) in keratinocytes. The phorbol ester treatment or HRAS infection of primary keratinocytes increased fatty acids that were associated with enhanced PPARß/δ activity. Fatty acids caused PPARß/δ-dependent increases in chromatin occupancy and the expression of angiopoietin-like protein 4 (Angptl4) mRNA. Analyses demonstrated that stearoyl Co-A desaturase 1 (Scd1) mediates an increase in intracellular monounsaturated fatty acids in keratinocytes that act as PPARß/δ ligands. The activation of PPARß/δ with palmitoleic or oleic acid causes arrest at the G2/M phase of the cell cycle of HRAS-expressing keratinocytes that is not found in similarly treated HRAS-expressing Pparb/d-null keratinocytes. HRAS-expressing Scd1-null mouse keratinocytes exhibit enhanced cell proliferation, an effect that is mitigated by treatment with palmitoleic or oleic acid. Consistent with these findings, the ligand activation of PPARß/δ with GW0742 or oleic acid prevented UVB-induced non-melanoma skin carcinogenesis, an effect that required PPARß/δ. The results from these studies demonstrate that PPARß/δ has endogenous roles in keratinocytes and can be activated by lipids found in diet and cellular components.


Assuntos
Queratinócitos , PPAR delta , PPAR beta , Estearoil-CoA Dessaturase , Queratinócitos/metabolismo , Queratinócitos/efeitos dos fármacos , PPAR beta/metabolismo , PPAR beta/genética , Animais , Camundongos , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , PPAR delta/metabolismo , PPAR delta/genética , Ácidos Graxos/metabolismo , Proteína 4 Semelhante a Angiopoietina/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Humanos , Ácido Oleico/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos Monoinsaturados/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
12.
Adv Healthc Mater ; 13(10): e2303593, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38215360

RESUMO

Current nucleic acid delivery methods have not achieved efficient, non-toxic delivery of miRNAs with tumor-specific selectivity. In this study, a new delivery system based on light-inducible gold-silver-gold, core-shell-shell (CSS) nanoparticles is presented. This system delivers small nucleic acid therapeutics with precise spatiotemporal control, demonstrating the potential for achieving tumor-specific selectivity and efficient delivery of miRNA mimics. The light-inducible particles leverage the photothermal heating of metal nanoparticles due to the local surface plasmonic resonance for controlled chemical cleavage and release of the miRNA mimic payload. The CSS morphology and composition result in a plasmonic resonance within the near-infrared (NIR) region of the light spectrum. Through this method, exogenous miR-34a-5p mimics are effectively delivered to human squamous cell carcinoma TE10 cells, leading to apoptosis induction without adverse effects on untransformed keratinocytes in vitro. The CSS nanoparticle delivery system is tested in vivo in Foxn1nu athymic nude mice with bilateral human esophageal TE10 cancer cells xenografts. These experiments reveal that this CSS nanoparticle conjugates, when systemically administered, followed by 850 nm light emitting diode irradiation at the tumor site, 6 h post-injection, produce a significant and sustained reduction in tumor volume, exceeding 87% in less than 72 h.


Assuntos
Neoplasias Esofágicas , Nanopartículas Metálicas , MicroRNAs , Nanopartículas , Animais , Camundongos , Humanos , Camundongos Nus , Nanopartículas/química , MicroRNAs/genética , Nanopartículas Metálicas/química , Neoplasias Esofágicas/tratamento farmacológico , Ouro/química , Linhagem Celular Tumoral
13.
Cytokine ; 64(3): 652-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24075100

RESUMO

The transforming growth factor-beta 1 (TGFß1) and NFκB pathways are important regulators of epidermal homeostasis, inflammatory responses and carcinogenesis. Previous studies have shown extensive crosstalk between these pathways that is cell type and context dependent, but this has not been well-characterized in epidermal keratinocytes. Here we show that in primary mouse keratinocytes, TGFß1 induces NFκB-luciferase reporter activity that is dependent on both NFκB and Smad3. TGFß1-induced NFκB-luciferase activity was blocked by the IκB inhibitor parthenolide, the IκB super-repressor, a dominant negative TGFß1-activated kinase 1 (TAK1) and genetic deletion of NFκB1. Coexpression of NFκB p50 or p65 subunits enhanced NFκB-luciferase activity. Similarly, inhibition of the TGFß1 type I receptor with SB431542 or genetic deletion of Smad3 blocked TGFß1 induction of NFκB-luciferase. TGFß1 rapidly induced IKK phosphorylation but did not cause a detectable decrease in cytoplasmic IκB levels or nuclear translocation of NFκB subunits, although EMSA showed rapid NFκB nuclear binding activity that could be blocked by SB431542 treatment. TNFα, a well characterized NFκB target gene was also induced by TGFß1 and this was blocked in NFκB+/- and -/- keratinocytes and by the IκB super-repressor. To test the effects of the TGFß1 pathway on a biologically relevant activator of NFκB, we exposed mice and primary keratinocytes in culture to UVB irradiation. In primary keratinocytes UVB caused a detectable increase in levels of Smad2 phosphorylation that was dependent on ALK5, but no significant increase in SBE-dependent gene expression. Inhibition of TGFß1 signaling in primary keratinocytes with SB431542 or genetic deletion of Tgfb1 or Smad3 suppressed UVB induction of TNFα message. Similarly, UVB induction of TNFα mRNA was blocked in skin of Tgfb1+/- mice. These studies demonstrate that intact TGFß1 signaling is required for NFκB-dependent gene expression in mouse keratinocytes and skin and suggest that a convergence of these pathways in the nucleus rather than the cytoplasm may be critical for regulation of inflammatory pathways in skin by TGFß1.


Assuntos
Expressão Gênica/genética , Queratinócitos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Animais , Animais Recém-Nascidos , Benzamidas/farmacologia , Células Cultivadas , Dioxóis/farmacologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos da radiação , Immunoblotting , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Luciferases/genética , Luciferases/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/genética , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/farmacologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Raios Ultravioleta
14.
Aging Biol ; 12023.
Artigo em Inglês | MEDLINE | ID: mdl-38500537

RESUMO

On April 28th, 2022, a group of scientific leaders gathered virtually to discuss molecular and cellular mechanisms of responses to stress. Conditions of acute, high-intensity stress are well documented to induce a series of adaptive responses that aim to promote survival until the stress has dissipated and then guide recovery. However, high-intensity or persistent stress that goes beyond the cell's compensatory capacity are countered with resilience strategies that are not completely understood. These adaptative strategies, which are an essential component of the study of aging biology, were the theme of the meeting. Specific topics discussed included mechanisms of proteostasis, such as the unfolded protein response (UPR) and the integrated stress response (ISR), as well as mitochondrial stress and lysosomal stress responses. Attention was also given to regulatory mechanisms and associated biological processes linked to age-related conditions, such as muscle loss and regeneration, cancer, senescence, sleep quality, and degenerative disease, with a general focus on the relevance of stress responses to frailty. We summarize the concepts and potential future directions that emerged from the discussion and highlight their relevance to the study of aging and age-related chronic diseases.

15.
Carcinogenesis ; 33(7): 1310-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22610166

RESUMO

Neoplastic growth is associated with increased polyamine biosynthetic activity and content. Tumor promoter treatment induces the rate-limiting enzymes in polyamine biosynthesis, ornithine decarboxylase (ODC), and S-adenosylmethionine decarboxylase (AdoMetDC), and targeted ODC overexpression is sufficient for tumor promotion in initiated mouse skin. We generated a mouse model with doxycycline (Dox)-regulated AdoMetDC expression to determine the impact of this second rate-limiting enzyme on epithelial carcinogenesis. TetO-AdoMetDC (TAMD) transgenic founders were crossed with transgenic mice (K5-tTA) that express the tetracycline-regulated transcriptional activator within basal keratinocytes of the skin. Transgene expression in TAMD/K5-tTA mice was restricted to keratin 5 (K5) target tissues and silenced upon Dox treatment. AdoMetDC activity and its product, decarboxylated AdoMet, both increased approximately 8-fold in the skin. This enabled a redistribution of the polyamines that led to reduced putrescine, increased spermine, and an elevated spermine:spermidine ratio. Given the positive association between polyamine biosynthetic capacity and neoplastic growth, it was somewhat surprising to find that TAMD/K5-tTA mice developed significantly fewer tumors than controls in response to 7,12-dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol-13-acetate chemical carcinogenesis. Importantly, tumor counts in TAMD/K5-tTA mice rebounded to nearly equal the levels in the control group upon Dox-mediated transgene silencing at a late stage of tumor promotion, which indicates that latent viable initiated cells remain in AdoMetDC-expressing skin. These results underscore the complexity of polyamine modulation of tumor development and emphasize the critical role of putrescine in tumor promotion. AdoMetDC-expressing mice will enable more refined spatial and temporal manipulation of polyamine biosynthesis during tumorigenesis and in other models of human disease.


Assuntos
Adenosilmetionina Descarboxilase/metabolismo , Neoplasias Cutâneas/enzimologia , Animais , Sequência de Bases , Primers do DNA , Camundongos , Camundongos Transgênicos , Neoplasias Cutâneas/patologia
16.
J Invest Dermatol ; 142(6): 1682-1691.e7, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34808241

RESUMO

The unfolded protein response is activated by UVB irradiation, but the role of a key mediator, IRE1α, is not clear. In this study, we show that mice with an epidermal IRE1α deletion are sensitized to UV with increased apoptosis, rapid loss of UV-induced cyclopyrimidine dimer‒positive keratinocytes, and sloughing of the epidermis. In vitro, Ire1α-deficient keratinocytes have increased UVB sensitivity, reduced cyclopyrimidine dimer repair, and reduced accumulation of γH2AX and phosphorylated ATR, suggesting defective activation of nucleotide excision repair. Knockdown of XBP1 or pharmacologic inhibition of the IRE1α ribonuclease did not phenocopy Ire1α deficiency. The altered UV response was linked to elevated intracellular calcium levels and ROS, and this was due to dysregulation of the endoplasmic reticulum calcium channel InsP3R. Pharmacologic, genetic, and biochemical studies linked the regulation of the Ins3PR, intracellular calcium, and normal UV DNA damage response to CIB1 and the IRE1α‒TRAF2‒ASK1 complex. These results suggest a model where IRE1α activation state drives CIB1 binding either to the InsP3R or ASK1 to regulate endoplasmic reticulum calcium efflux, ROS, and DNA repair responses after UV irradiation.


Assuntos
Estresse do Retículo Endoplasmático , Endorribonucleases , Animais , Cálcio/metabolismo , Reparo do DNA , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Homeostase , Camundongos , Proteínas Serina-Treonina Quinases/genética , Espécies Reativas de Oxigênio/metabolismo , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
17.
Am J Pathol ; 177(2): 632-43, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20616344

RESUMO

We recently showed in a tetracycline-controlled transgenic mouse model that overexpression of transforming growth factor (TGF)-beta1 in renal tubules induces widespread peritubular fibrosis and focal degeneration of nephrons. In the present study we have analyzed the mechanisms underlying these phenomena. The initial response to tubular cell-derived TGF-beta1 consisted of a robust proliferation of peritubular cells and deposition of collagen. On sustained expression, nephrons degenerated in a focal pattern. This process started with tubular dedifferentiation and proceeded to total decomposition of tubular cells by autophagy. The final outcome was empty collapsed remnants of tubular basement membrane embedded into a dense collagenous fibrous tissue. The corresponding glomeruli survived as atubular remnants. Thus, TGF-beta1 driven autophagy may represent a novel mechanism of tubular decomposition. The fibrosis seen in between intact tubules and in areas of tubular decomposition resulted from myofibroblasts that were derived from local fibroblasts. No evidence was found for a transition of tubular cells into myofibroblasts. Neither tracing of injured tubules in electron micrographs nor genetic tagging of tubular epithelial cells revealed cells transgressing the tubular basement membrane. In conclusion, overexpression of TGF-beta1 in renal tubules in vivo induces interstitial proliferation, tubular autophagy, and fibrosis, but not epithelial-to-mesenchymal transition.


Assuntos
Autofagia/fisiologia , Células Epiteliais/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Túbulos Renais , Rim , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células Epiteliais/ultraestrutura , Fibrose/metabolismo , Fibrose/patologia , Rim/citologia , Rim/metabolismo , Rim/patologia , Túbulos Renais/metabolismo , Túbulos Renais/ultraestrutura , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos
18.
Carcinogenesis ; 31(12): 2127-35, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20852150

RESUMO

Pharmacological inhibitors of the transforming growth factor ß (TGFß) type I receptor (ALK5) have shown promise in blocking growth of xenotransplanted cancer cell lines but the effect on a multistage cancer model is not known. To test this, we treated mouse skin with SB431542 (SB), a well-characterized ALK5 inhibitor, during a two-stage skin carcinogenesis assay. Topical SB significantly reduced the total number, incidence and size of papillomas compared with 12-O-tetradecanoylphorbol 13-acetate (TPA) promotion alone, and this was linked to increased epidermal apoptosis, decreased proliferation and decreased cutaneous inflammation during promotion. In contrast, the frequency of conversion to squamous cell carcinoma (SCC) was 2-fold higher in papillomas treated with SB. Although there was no difference in tumor cell proliferation in early premalignant lesions, those that formed after SB treatment exhibited reduced squamous differentiation and an altered inflammatory microenvironment similar to SCC. In an inducible epidermal RAS transgenic model, treatment with SB enhanced proliferation and cutaneous inflammation in skin but decreased expression of keratin 1 and increased expression of simple epithelial keratin 18, markers of premalignant progression. In agreement with increased frequency of progression in the multistage model, SB treatment resulted in increased tumor formation with a more malignant phenotype following long-term RAS induction. In contrast to the current paradigm for TGFß in carcinogenesis, these results demonstrate that cutaneous TGFß signaling enables promotion of benign tumors but suppresses premalignant progression through context-dependent regulation of epidermal homeostasis and inflammation.


Assuntos
Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Transdução de Sinais , Neoplasias Cutâneas/etiologia , Fator de Crescimento Transformador beta1/fisiologia , Animais , Benzamidas/farmacologia , Dioxóis/farmacologia , Progressão da Doença , Genes ras , Camundongos , Papiloma/etiologia , Papiloma/prevenção & controle , Receptor do Fator de Crescimento Transformador beta Tipo I , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
19.
Carcinogenesis ; 31(6): 1116-23, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20172950

RESUMO

Transforming growth factor beta1 (TGFbeta1) expression is elevated by tumor promoters in the mouse skin, but its role in tumor promotion has not been well defined. To investigate this, we have compared TGFbeta1+/+ and +/- mice in a two-stage skin chemical carcinogenesis protocol. Surprisingly, TGFbeta1+/- mice had fewer number and incidence of benign papillomas, reduced epidermal and tumor cell proliferation and reduced epidermal TGFbeta1 and nuclear p-Smad2 localization in response to the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) compared with TGFbeta1+/+ mice. Maximal TPA activation of protein kinase C (PKCalpha) as measured by activity assays and activation of target genes and induction of cornified envelopes correlated with TGFbeta1 gene dosage in keratinocytes and addition of exogenous TGFbeta1 restored the cornification defect in TGFbeta1+/- keratinocytes. Similarly, inhibition of ALK5-suppressed TPA-mediated PKCalpha activation suggesting that physiological levels of TGFbeta1 are required for maximal activation of PKC-dependent mitogenic responses. Paradoxically, the TPA-induced inflammatory response was greater in TGFbeta1+/- skin, but TGFbeta1+/+ papillomas had more tumor infiltrating myeloperoxidase-positive cells and pro-inflammatory gene expression was elevated in v-ras(Ha)-transduced TGFbeta1+/+ but not TGFbeta1+/- keratinocytes. Thus, ras activation switches TGFbeta1 to a pro-inflammatory cytokine. Despite this differential proliferative and inflammatory response to TPA and enhanced papilloma formation in the TGFbeta1+/+ mice, the frequency of malignant conversion was reduced compared with TGFbeta1+/- mice. Therefore, TGFbeta1 promotes benign tumors by modifying tumor promoter-induced cell proliferation and inflammation but retains a suppressive function for malignant conversion.


Assuntos
Papiloma/fisiopatologia , Neoplasias Cutâneas/fisiopatologia , Fator de Crescimento Transformador beta1/fisiologia , Animais , Carcinógenos/toxicidade , Proliferação de Células , Transformação Celular Neoplásica , Camundongos , Camundongos Endogâmicos BALB C , Papiloma/induzido quimicamente , Papiloma/patologia , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol/toxicidade
20.
J Pathol ; 219(2): 263-74, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19718706

RESUMO

Transcriptional regulation by p53 is critical for p53-mediated tumour suppression; however, p53-mediated transactivation has been dissociated from p53-mediated biological processes including apoptosis, DNA repair, and differentiation. We compared the effects of a mutant allele, p53(QS - val135), containing a double mutation in the amino-terminus abrogating transactivation activity and a modification at amino acid 135 partially affecting DNA binding, to complete loss of p53. We applied in vitro endpoints correlated with epithelial tumourigenesis and an in vivo assay of tumour phenotype to assess whether loss of p53-mediated transcriptional regulation underlies the malignant phenotype of p53(-/-)/v-ras(Ha)-overexpressing keratinocytes. Transactivation deficiency of p53QS-val135 was confirmed by reporter gene assays in fibroblasts and differentiating keratinocytes. Ras oncogene-induced senescence was lost in both p53(QS - val135/QS - val135) and p53(-/-) keratinocytes. Similarly, p53(QS - val135/QS - val135), like p53(-/-), cooperated with v-ras(Ha) to enhance malignant conversion. The tumours arising in p53(QS - val135/QS - val135) keratinocytes displayed strong nuclear p53 expression; thus, the p53(QS - val135) allele was maintained and the deficient transactivation function of the expressed p53QS mutant protein was supported by absence of p21(waf1) in these tumours. The p53(QS - val135) allele did not confer a dominant-negative phenotype, as p53(+/QS - val135) keratinocytes senesced normally in response to v-ras(Ha) expression and formed benign tumours. While p53(-/-) keratinocytes displayed diminished response to TGF-beta, p53(QS - val135/QS - val135) and p53(+/+) keratinocytes responded equivalently, indicating that the requirement for p53 in maximizing TGF-beta-mediated growth regulation is independent of its transactivation domain and that the ability of keratinocytes to respond to TGF-beta is insufficient to suppress the malignant phenotype in this model. Furthermore, TGF-beta enhances p53QS-induced activation of a dual p53-TGF-beta responsive reporter in a keratinocyte cell line. These findings support an essential role for p53-mediated transcriptional regulation in suppressing malignancies arising from ras-induced skin tumours, consistent with previous findings in spontaneous carcinogenesis in other organs, and highlight the potential importance of senescence for tumour suppression in vivo.


Assuntos
Carcinoma de Células Escamosas/prevenção & controle , Transformação Celular Neoplásica/genética , Genes p53/genética , Neoplasias Cutâneas/prevenção & controle , Fator de Crescimento Transformador beta/fisiologia , Animais , Carcinoma de Células Escamosas/genética , Células Cultivadas , Senescência Celular/genética , Genótipo , Queratinócitos/transplante , Camundongos , Camundongos Nus , Mutação , Transplante de Neoplasias , Neoplasias Cutâneas/genética , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA