RESUMO
The search for new scaffolds of medicinal significance combined with molecular shape enhances their innovative potential and continues to attract the attention of researchers. Herein, we report the synthesis, spectroscopic characterization (1H and 13C NMR, UV-vis, IR), ESI-mass spectrometry, and single-crystal X-ray diffraction analysis of a new ring system of medicinal significance, 5,6,7,9-tetrahydro-8H-indolo[3,2-e]benzazocin-8-one, and a series of derived potential ligands (HL1-HL5), as well as ruthenium(II), osmium(II), and copper(II) complexes (1a, 1b, and 2-5). The stability of compounds in 1% DMSO aqueous solutions has been confirmed by 1H NMR and UV-vis spectroscopy measurements. The antiproliferative activity of HL1-HL5 and 1a, 1b, and 2-5 was evaluated by in vitro cytotoxicity tests against four cancer cell lines (LS-174, HCT116, MDA-MB-361, and A549) and one non-cancer cell line (MRC-5). The lead compounds HL5 and its copper(II) complex 5 were 15× and 17×, respectively, more cytotoxic than cisplatin against human colon cancer cell line HCT116. Annexin V-FITC apoptosis assay showed dominant apoptosis inducing potential of both compounds after prolonged treatment (48 h) in HCT116 cells. HL5 and 5 were found to induce a concentration- and time-dependent arrest of cell cycle in colon cancer cell lines. Antiproliferative activity of 5 in 3D multicellular tumor spheroid model of cancer cells (HCT116, LS-174) superior to that of cisplatin was found. Moreover, HL5 and 5 showed notable inhibition potency against glycogen synthase kinases (GSK-3α and GSK-3ß), tyrosine-protein kinase (Src), lymphocyte-specific protein-tyrosine kinase (Lck), and cyclin-dependent kinases (Cdk2 and Cdk5) (IC50 = 1.4-6.1 µM), suggesting their multitargeted mode of action as potential anticancer drugs.
Assuntos
Antineoplásicos , Neoplasias do Colo , Complexos de Coordenação , Compostos Heterocíclicos , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Cobre/farmacologia , Cobre/química , Cisplatino/farmacologia , Linhagem Celular Tumoral , Glicogênio Sintase Quinase 3 beta/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Compostos Heterocíclicos/farmacologia , Proliferação de CélulasRESUMO
The current study aimed to phytochemically characterize (including a detailed phenolic profile) two endemic Balkan's species (Hieracium waldsteinii and Onosma stellulata) and determine their possible application as a source of natural antioxidant and antimicrobial agents. The main phenolic compound in both species (in all examined parts) was chlorogenic acid. Eriodictyol, genistein and naringenin were quantified only in H. waldsteinii while isorhamnetin-3-O-rutinoside and sinapic acid were characteristic for O. stellulata. The highest antioxidant activity (98â mg AAE/g dry weight for TAC assay) was ascribed to the flower extract of H. waldsteinii while the lowest results (â¼4.3â mg AAE/g dry weight for FRP assay) were exhibited by the extracts obtained from the plant's stem. Antimicrobial assays showed moderate antibacterial, i. e., moderate/strong activity against several tested fungi (in particular Trichoderma viride). Correlation analysis revealed strong positive connection between phenolic compounds and reducing power of extracts as well as between total phenolic and flavonoid content and the obtained minimal inhibitory concentration recorded in antibacterial assays.
Assuntos
Asteraceae , Boraginaceae , Antibacterianos/análise , Antibacterianos/farmacologia , Antioxidantes/química , Asteraceae/química , Boraginaceae/química , Fenóis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologiaRESUMO
Three new ruthenium(II)-arene complexes with pyrido[2',3':5,6]pyrazino[2,3-f][1, 10]phenanthroline (ppf) of general formula: C1 ([(Æ6-benzene)Ru(ppf)Cl]PF6, C2 ([(Æ6-toluene)Ru(ppf)Cl]PF6) and C3 ([(Æ6-p-cymene)Ru(ppf)Cl]PF6) have been synthesized. The structures of complexes were determined by elemental analysis, IR, ESI-MS, as well as with 1H and 13C NMR spectroscopy. Cytotoxic activity has been evaluated in three different human neoplastic cell lines (A549, A375, LS 174T) and in one human non-tumor cell line (MRC-5), by the MTT assay. Complexes C1-C3 showed IC50 values in the micromolar range below 100 µM. Complex C3, carrying Æ6-p-cymene as the arene ligand, exhibited cytoselective activity toward human malignant melanoma A375 cells (IC50 = 15.8 ± 2.7 µM), and has been selected for further analyses of its biological effects. Drug-accumulation study performed in the A375 cells disclosed that C3 possess lower ability of entering the cells compared to cisplatin and distributes approximately equally in the cytosol and membrane/organelle fraction of cells. Investigations in the 3D model of A375 cells, disclosed different effects of the complex C3 and cisplatin on growth of multicellular tumor spheroids (MCTSs). While the size of cisplatin-treated MCTSs decreased with time, MCTSs treated with C3 continued to growth. Differences in structural organization and biological activity of this type of ruthenium(II)-arene complexes versus cisplatin in A375 malignant melanoma cells pointed out their different modes of action, and necessity for further biological studies and optimizations for potential applications.
Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Fenantrolinas/farmacologia , Rutênio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Fenantrolinas/química , Rutênio/química , Relação Estrutura-Atividade , Células Tumorais CultivadasRESUMO
Square-planar azido Ni(II) complex with condensation product of 2-(diphenylphosphino)benzaldehyde and Girard's T reagent was synthesized and its crystal structure was determined. Cytotoxic activity of the azido complex and previously synthesized isothiocyanato, cyanato and chlorido Ni(II) complexes with this ligand was examined on six tumor cell lines (HeLa, A549, K562, MDA-MB-453, MDA-MB-361 and LS-174) and two normal cell line (MRC-5 and BEAS-2B). All the investigated nickel(II) complexes were cytotoxic against all tumor cell lines. The newly synthesized azido complex showed selectivity to HeLa and A549 tumor cell lines compared to the normal cells (for A549 IC50 was similar to that of cisplatin). Azido complex interferes with cell cycle phase distribution of A549 and HeLa cells and possesses nuclease activity towards supercoiled DNA. The observed selectivity of the azido complex for some tumor cell lines can be connected with its strong DNA damaging activity.
Assuntos
Antineoplásicos/farmacologia , Benzaldeídos/química , Halogênios/química , Hidrazonas/química , Níquel/química , Antineoplásicos/química , Cristalografia por Raios X , Células HeLa , Humanos , Microscopia de Fluorescência , Espectrometria de Fluorescência , Espectrofotometria Infravermelho , Espectrofotometria UltravioletaRESUMO
PURPOSE: Recently, we reported the synthesis and characterization of two complexes of general formula cis-[Ru(S-DMSO)3(R-CO-CH=CH-R')Cl] (R = 2-hydroxyphenyl for both, R' = thiophene (1), 3-methyl thiophene (2)) that showed remarkable topoisomerase II inhibition and strong binding with DNA. The aim of this study was the investigation of cytotoxic properties of these complexes against a panel of human tumor cell lines, with elucidation of their anticancer mechanisms in HeLa cells. METHODS: Characterization of anticancer activity of the investigated ruthenium complexes 1 and 2 included analysis of cytotoxicity by MTT assay. Cell cycle phase disruption of HeLa cells treated with complexes 1 and 2 was analyzed by flow cytometry after propidium iodide (PI) staining. Annexin V-FITC/PI double staining and further flow cytometry analysis and acridine orange (AO)/ethidium bromide (EB) double staining and fluorescent microscopy were used to determine the apoptotic potential of the investigated ruthenium complexes. The inhibitory effect on gelatinases (MMP-2 and MMP-9) as an indication of possible antimetastatic potential was also analyzed using gelatine zymography. RESULTS: The 50% cell growth inhibition (IC50) values of the investigated complexes ranged between 22.9 and 76.8 µM, with complex 2 being more cytotoxic. Both complexes induced G2 phase cell cycle arrest and apoptosis in HeLa cells. Inhibitory effect of complex 2 on MMP-2 activity was detected. CONCLUSIONS: This work revealed the potential of the investigated Ru(II)-DMSO-chalcone complexes as anticancer agents with cytotoxic and pro-apoptotic activity and indicated complex 2 as leading compound for further chemical modifications and anticancer research.
Assuntos
Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Chalconas/farmacologia , Dimetil Sulfóxido/farmacologia , Neoplasias/tratamento farmacológico , Compostos de Rutênio/farmacologia , Inibidores da Topoisomerase II/farmacologia , Proliferação de Células/efeitos dos fármacos , Chalconas/síntese química , Dimetil Sulfóxido/análogos & derivados , Dimetil Sulfóxido/síntese química , Relação Dose-Resposta a Droga , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HeLa , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Estrutura Molecular , Invasividade Neoplásica , Neoplasias/patologia , Compostos de Rutênio/síntese química , Relação Estrutura-Atividade , Fatores de Tempo , Inibidores da Topoisomerase II/síntese químicaRESUMO
BACKGROUND: In our previous study we reported the synthesis and cytotoxicity of two trans-platinum(II) complexes: trans-[PtCl2(3-acetylpyridine)2] (1) and trans-[PtCl2(4-acetylpyridine)2] (2), revealing significant cytotoxic potential of 2. In order to evaluate the mechanism underlying biological activity of both trans-Pt(II) isomers, comparative studies versus cisplatin were performed in HeLa, MRC-5 and MS1 cells. MATERIALS AND METHODS: The cytotoxic activity of the investigated complexes was determined using SRB assay. The colagenolytic activity was determined using gelatin zymography, while the effect of platinum complexes on matrix metalloproteinases 2 and 9 mRNA expression was evaluated by quantitative real-time PCR. Apoptotic potential and cell cycle alterations were determined by FACS analyses. Western blot analysis was used to evaluate the effect on expression of DNA-repair enzyme ERCC1, and quantitative real-time PCR was used for the ERCC1 mRNA expression analysis. In vitro antiangiogenic potential was determined by tube formation assay. Platinum content in intracellular DNA and proteins was determined by inductively coupled plasma-optical emission spectrometry. RESULTS: Compound 2 displayed an apparent cytoselective profile, and flow cytometry analysis in HeLa cells indicated that 2 exerted antiproliferative effect through apoptosis induction, while 1 induced both apoptosis and necrosis. Action of 1 and 2, as analyzed by quantitative real-time PCR and Western blot, was associated with down-regulation of ERCC1. Both trans-complexes inhibited MMP-9 mRNA expression in HeLa, while 2 significantly abrogated in vitro tubulogenesis in MS1 cells. CONCLUSIONS: The ability of 2 to induce multiple and selective in vitro cytotoxic effects encourages further investigations of trans-platinum(II) complexes with substituted pyridines.
RESUMO
The biological activity of six structurally similar tetradentate Schiff base copper(II) complexes, namely [Cu(ethylenediamine-bis-acetylacetonate)] (CuAA) and five derivatives where two methyl groups are replaced by phenyl, (CuPP), CF3 (CuTT) or by mixed groups CH3/CF3 (CuAT), Ph/CF3 (CuPT), and Ph/CH3 (CuAP) has been investigated. The set of antioxidant assays was performed, and the results were expressed as IC50 and EC50 values. The series of complexes showed interesting bioactivity and were investigated for the determination of antioxidant, antifungal, antimicrobial, and cytotoxic activity. A significant antioxidant behavior was exhibited by complex CuAA, greater than Trolox in the Oxygen Radical Absorbance Capacity (ORAC) assay. Antibacterial assay over Gram-positive and Gram-negative pathogenic bacterial strains and some fungal pathogens were studied. Antiproliferative activity of complexes in two human tumor cell lines, breast adenocarcinoma MCF-7, colon adenocarcinoma LS-174, and normal fibroblast cells-MRC-5, examined the effect on cell cycle progression. The significant cytotoxic potential, comparable to cisplatin cytotoxicity, was determined in human breast cancer cell line-MCF-7 with IC50 values being 17.53-31.40 µM and human colon cancer cell line-LS-174 with IC50 values being 15.22-23.92 µM. All tested compounds showed nearly twice more selectivity toward cancer cell lines than normal cells. The interactions of complexes with human serum albumin (HSA), the most prominent protein in plasma, were investigated using spectroscopic fluorescence techniques. The complexes bind to human serum albumin at multiple sites (n = 0.2-1.9), displaying a moderate binding constant Ka = 4.1-12.4 × 104 M-1. The molecular docking experiment effectively showed complex binding to HSA and DNA molecular fragments.
Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Complexos de Coordenação , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Cobre/química , Bases de Schiff/farmacologia , Bases de Schiff/química , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Albumina Sérica Humana/química , Etilenodiaminas/farmacologia , LigantesRESUMO
This study aims to examine in detail for the first time the cytotoxic profile of twelve choline chloride-based deep eutectic solvents (NADES) against HT-29, Caco-2, MCF-7, and MRC-5 cell lines. All NADES systems were synthesized by microwave synthesis using choline chloride as a hydrogen bond acceptor (HBA) and selected sugars, alcohols, organic acids, and urea as hydrogen bond donors (HBD) with the addition of 20% water (w/w) to all systems. It was observed that the cytotoxic effect predominantly depended on the structure of HBD. Acidic systems, where HBDs were organic acids showed the highest cytotoxic effects in all investigated cell lines. The cytotoxicity depended mostly on the concentration of the NADES system in the cell medium as well as on the chemical constitution of the investigated systems. The highest cytotoxic effects showed acidic systems, especially to the HT-29 cell line. The EC50 value for the citric acid-based system was 3.91 mg mL-1 for the HT-29 cell line which was the most vulnerable to acidic NADES systems.
RESUMO
The four novel complexes [{cis-PtCl(NH3)2(µ-4,4'-bipyridyl)ZnCl(terpy)}](ClO4)2 (C1), [{trans-PtCl(NH3)2(µ-4,4'-bipyridyl)ZnCl(terpy)}](ClO4)2 (C2), [{cis-PtCl(NH3)2(µ-pyrazine)ZnCl(terpy)}](ClO4)2 (C3) and [{trans-PtCl(NH3)2(µ-pyrazine)ZnCl(terpy)}](ClO4)2 (C4) (where terpy = 2,2':6',2''-terpyridine) were synthesized and characterized. Acid-base titrations and concentration dependent kinetic measurements for the reactions with biologically relevant ligands such as guanosine-5'-monophosphate (5'-GMP), inosine-5'-monophosphate (5'-IMP) and glutathione (GSH), were studied at pH 7.4 and 37 °C. The binding of the heterometallic bridged cis- or trans-Pt(II)-Zn(II) complexes to calf thymus DNA (CT-DNA) was studied by UV absorption and fluorescence emission spectroscopy and molecular docking. The results indicated that the complexes bind strongly to DNA, through groove binding, hydrogen bonds, and hydrophobic or electrostatic interaction. The possible in vitro DNA protective effect of cis- and trans-Pt-L-Zn complexes has shown that C3 had significant dose-dependent DNA-protective effect and the same ability to inhibit peroxyl as well as hydroxyl radicals. Antiproliferative effect of the complexes, mRNA expression of apoptosis and repair-related genes after treatment in cancer cells indicated that newly synthesized C2 exhibited highly selective cytotoxicity toward colon carcinoma HCT116 cells. Only treatment with trans analog C2 induced effect similar to the typical DNA damaging agent such as cisplatin, characterized by p53 mediated cell response, cell cycle arrest and certain induction of apoptotic related genes. Both cis- and trans-isomers C1 and C2 showed potency to elicit expression of PARP1 mRNA and in vitro DNA binding.
Assuntos
Antineoplásicos , Humanos , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , DNA/química , Pirazinas , ZincoRESUMO
Three Re(V) complexes of structural formulas [ReOCl2L(PPh3)], where L is pyridine-2-carboxylic acid (C1), 3-methyl-pyridine-2-carboxylic acid (C2) and 6-methyl-pyridine-2-carboxylic acid (C3) were synthesized and characterized using NMR, IR spectroscopy and mass spectrometry. Crystal structures of all three complexes have been additionally confirmed by X-ray analysis. The biological activity has been investigated in the panel of tumor cell lines A549, PANC-1, MDA-MB-231, MCF-7, LS-174, EAhy.926 and one in non-tumor cell line MRC-5. Only C1 showed dose-dependent cytotoxic potential, particularly toward triple-negative breast adenocarcinoma cells MDA-MB-231 with IC50 68.90 ± 1.73 µM and pancreatic adenocarcinoma cells PANC-1 with IC50 69.84 ± 2.3 µM. Both cell lines are characterized by a highly invasive and resistant phenotype. Drug combination studies in PANC-1 cells with C1 and Verapamil hydrochloride (VRP), which is the established inhibitor of efflux transporter P-glycoprotein (Pgp), revealed enhancement of antiproliferative action of the complex in a dose-dependent manner, and slight arrest of cell cycle in the S phase. Also, a depletion of the glutathione (GSH) level by L-buthionine-sulfoximine (L-BSO) at sub-toxic concentrations (100 µM) caused an increase of activity of C1 to the IC50 57.67 ± 6.51 (µM). A morphological analysis in PANC-1 cells by dual acridine orange/ethidium bromide staining, revealed apoptotic potential of complex C1 and a slower kinetic of cell death induction, suggesting a different mechanism of action compared to cisplatin.
Assuntos
Adenocarcinoma , Antineoplásicos , Complexos de Coordenação , Neoplasias Pancreáticas , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Combinação de Medicamentos , Humanos , RênioRESUMO
Twenty five 4-aminomethylidene derivatives obtained from 3-phenyl-2-pyrazolin-5-one and 1,3-diphenyl-2-pyrazolin-5-one were synthesized and tested for their antiproliferative activity against human breast cancer MDA-MB-361 and MDA-MB-453 cell lines. The compounds derived from 1,3-diphenyl-2-pyrazolin-5-one exhibited the most remarkable activity in the treatment of both cell lines. In vitro antiproliferative activities were accompanied by an important apoptotic fraction of both cell lines; also, compounds inhibited key endothelial cell functions implicated in invasion and angiogenesis. QSAR methods were performed in order to analyze the influence of structural features of the compounds investigated on the antiproliferative potential on MDA-MB-361 and MDA-MB-453 cancer cells. One-parameter heuristic analysis was performed and different whole molecule and fragmental descriptors were considered for rationalization of mechanism of interaction of these compounds with active place of hypothetical target included in tumorigenesis.
Assuntos
Antineoplásicos/química , Pirazolonas/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Relação Quantitativa Estrutura-AtividadeRESUMO
The monocationic chloro complexes containing chelating Nâ©N ligands: [(η6-p-cymene)Ru(L1-4)Cl]+ (1-4), where L1â¯=â¯4-methyl-1,10-phenantroline, L2â¯=â¯dipyrido[3,2-a:2',3'-c]phenazine, L3â¯=â¯11-chloro-dipyrido[3,2-a:2',3'-c]phenazine, L4â¯=â¯11-nitro-dipyrido[3,2-a:2',3'-c]phenazine; p-cymeneâ¯=â¯1-methyl-4-isopropylbenzene) have been prepared and characterized as the hexafluorophosphate salts. The biological activity of 1-4 has been investigated in selected 2D monolayer cell cultures (A549, PANC-1, MDA-MB-231, MRC-5). All investigated ruthenium complexes showed similar or even better cytotoxicity to cisplatin. However, there was no significant reduction in growth of PANC-1 cells in a 3D cell culture of multicellular tumor spheroids (MCTS) after treatment with 2-4, while the cisplatin treatment induced retardation in MCTS growth. Flow cytometry analysis of the cell cycle of PANC-1 cells shows that 3 caused changes of cell cycle phase distribution characterized by slight accumulation of cells in the G2-M phase. Absence of the Sub-G1 phase in the cell cycle of the treated cells indicated that there was no fragmentation of DNA for the analyzed time intervals (48 and 72â¯h treatment). Fluorescent microscopy, after acridine orange/ethidium bromide staining, revealed that the investigated ruthenium complexes induced some characteristics of apoptotic morphology (shrinking and condensation of chromatin) with notably preserved integrity of the plasma membrane. Investigation of cellular uptake and DNA - fraction accumulation performed by inductively coupled plasma mass spectrometry in PANC-1 cells with equimolar concentrations (5⯵M) of 2-4 and cisplatin showed more efficient cellular uptake and DNA - fraction accumulation of complex 3 compared to complexes 2 and 4.
Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Complexos de Coordenação/química , Neoplasias/tratamento farmacológico , Compostos Organometálicos/química , Fenantrolinas/química , Rutênio/química , Apoptose , Proliferação de Células , Cisplatino/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias/patologia , Células Tumorais CultivadasRESUMO
Inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1) showed remarkable clinical efficacy in BRCA-mutated tumors. Based on the rational drug design, derivatives of PARP inhibitor 3-aminobenzamide (3-AB), 2-amino-4-methylbenzamide (L1) and 3-amino-N-methylbenzamide (L2), were coordinated to the ruthenium(II) ion, to form potential drugs affecting DNA and inhibiting PARP enzyme. The four conjugated complexes of formula: C1 [(Æ6-toluene)Ru(L1)Cl]PF6, C2 [(Æ6-p-cymene)Ru(L1)Cl]PF6, C3 [(Æ6-toluene)Ru(L2)Cl2] and C4 [(Æ6-p-cymene)Ru(L2)Cl2], have been synthesized and characterized. Colorimetric 3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT) assay showed the highest antiproliferative activity of C1 in HCC1937, MDA-MB-231, and MCF-7 breast cancer cells. Efficiency of inhibition of PARP-1 enzymatic activity in vitro decreased in order: C2â¯>â¯C4â¯>â¯3-AB>C1â¯>â¯C3. ICP-MS study of intracellular accumulation and distribution in BRCA1-mutated HCC1937 revealed that C1-C4 entered cells within 24â¯h. The complex C1 showed the highest intracellular accumulation, nuclear-targeting properties, and exhibited the highest DNA binding (39.2⯱â¯0.6â¯pg of Ru per µg of DNA) that resulted in the cell cycle arrest in the S phase.
Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Complexos de Coordenação/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Proteína BRCA1/genética , Benzamidas/síntese química , Benzamidas/metabolismo , Neoplasias da Mama/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , DNA/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Mutação , Plasmídeos/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Rutênio/químicaRESUMO
With the aim of assessing whether Au(iii) compounds with pincer type ligands might be utilized as potential antitumor agents, three new monofunctional Au(iii) complexes of the general formula [Au(N-N'-N)Cl]Cl2, where N-N'-N = 2,6-bis(5-tert-butyl-1H-pyrazol-3-yl)pyridine (H2LtBu, 1), 2,6-bis(5-tert-butyl-1-methyl-1H-pyrazol-3-yl)pyridine (Me2LtBu, 2) or 2,6-bis((4S,7R)-1,7,8,8-tetramethyl-4,5,6,7-tetrahydro-1H-4,7-methanoindazol-3-yl)pyridine (Me2*L, 3) were synthesized. All complexes were characterized by elemental analysis, spectroscopic techniques (IR, UV-Vis, 1D and 2D NMR) and mass spectrometry (MALDI TOF MS). The chemical behavior of the complexes under physiological conditions was studied by UV-Vis spectroscopy, which showed that all compounds were remarkably stable and that the gold center remained in the 3+ oxidation state. The kinetics and the mechanism of the reaction of complexes 1-3 with guanine derivatives (i.e. guanosine (Guo) and guanosine-5'-monophosphate (5'-GMP)) and calf thymus DNA (CT DNA) were studied by stopped-flow spectroscopy. The three complexes displayed moderately different rate constants in their reactions with Guo, 5'-GMP and CT DNA, which can be explained by the steric hindrance and σ-donicity of the methyl substituent on the bis-pyrazolylpyridine fragment in complexes 2 and 3. The measured enthalpies and entropies of activation (ΔH≠ > 0, ΔS≠ < 0) supported an associative mechanism for the substitution process. The interaction of the newly synthesized complexes 1-3 with CT DNA was investigated by UV-Vis and fluorescence spectroscopy, and also by viscosity measurements, which all indicated that complexes 1-3 bound to CT DNA with moderate binding affinity (Kb = 1.6-5.7 × 103 M-1) and stabilized the duplex of CT DNA. Molecular docking indicated that complexes 1-3 interacted with DNA via intercalation. Complex 1 reduced the cell survival of all the investigated cell lines (A549, A375, and LS-174) with IC50 values being up to 20 µM. We have shown that 1 induced perturbations of the cell cycle and led to apoptosis in human melanoma A375 cells. Complex 1 also affected the level of reactive oxygen species (ROS) in the same cells. However, pre-treatment of A375 cells with NAC (ROS scavenger) reversed the effect of 1 on their survival.
Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , DNA/metabolismo , Ouro/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Química Sintética , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , DNA/química , Humanos , Cinética , Simulação de Acoplamento Molecular , Conformação de Ácido NucleicoRESUMO
In this study, we have developed a series of new monofunctional Ru(II) complexes of the general formula mer-[Ru(Cl-Ph-tpy)(N-N)Cl]Cl in which Cl-Ph-tpy is 4'-(4-chlorophenyl)-2,2':6',2â³-terpyridine, N-N is a bidentate chelating ligand (1,2-diaminoethane (en, 1), 1,2-diaminocyclohexane (dach, 2) or 2,2'-bipyridine (bpy, 3)). All complexes were fully characterized by elemental analysis and spectroscopic techniques (IR, UV-Vis, 1D and 2D NMR). Their chemical behavior in aqueous solution was studied by UV-Vis and NMR spectroscopy showing that all compounds are relatively labile leading to the formation of the corresponding aqua species 1aq-3aq. Their DNA binding ability was evaluated by UV-Vis spectroscopy, fluorescence quenching measurements and viscosity measurements. Competitive studies with ethidium bromide (EB) showed that the complexes can displace DNA-bound EB, suggesting strong competition with EB (Ksv=1.1-2.7×104M-1). These experiments show that the ruthenium complexes interact with DNA via intercalation. The complexes bind to serum protein albumin displaying relatively high binding constants (Ksv=104-105M-1). Compound 3 displayed from high to moderate cytotoxicity against two cancer cell lines HeLa and A549 (with IC50ca. 12.7µM and 53.8µM, respectively), while complexes 1 and 2 showed only moderate cytotoxicity (with IC50ca. 84.8µM and 96.3µM, respectively) against HeLa cells. The cell cycle analysis (by flow cytometry) of HeLa and A549 cells treated with complex 3 shows minor changes on the cell cycle phase distribution.
Assuntos
DNA/metabolismo , Substâncias Intercalantes/química , Substâncias Intercalantes/síntese química , Compostos de Rutênio/química , Compostos de Rutênio/síntese química , Rutênio/química , Soroalbumina Bovina/metabolismo , Células A549 , Animais , Bovinos , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA/química , Células HeLa , Humanos , Substâncias Intercalantes/efeitos adversos , Ligação Proteica , Compostos de Rutênio/efeitos adversos , Soroalbumina Bovina/químicaRESUMO
OBJECTIVES: The chemical composition, antimicrobial and synergistic effect, and cytotoxic activity of Citrus limon (lemon), Piper nigrum (green pepper) and Melaleuca alternifoila (tea tree) essential oils (EOs) were investigated. METHODS: Chemical analyses of essential oils were tested by GC-FID and GC-MS spectroscopy. The antimicrobial activity assay was conducted using microdilution method against several oral bacteria and Candida spp. originating from the humans with oral disorders. The synergistic antimicrobial activity was evaluated using checkerboard method. The cytotoxicity evaluation of EOs was assessed using MTT test. KEY FINDINGS: Limonene (37.5%) and ß-pinene (17.9%) were the major compounds in C. limon oil, ß-pinene (34.4%), δ-3-carene (19.7%), limonene (18.7%) and α-pinene (10.4%) in P. nigrum oil and terpinen-4-ol (38.6%) and γ-terpinene (21.7%) in M. alternifolia oil. The broad-spectrum antimicrobial activity was achieved by tested three EOs, with C. limon oil being the strongest against bacteria and M. alternifolia oil strongest against fungi. The EOs demonstrated synergism; their combined application revealed an increase in antimicrobial activity. All tested essential oils showed lower cytotoxic activity in comparison with the positive control, and the obtained results confirmed a dose-dependent activity. CONCLUSIONS: The results of this study encourage use of tested EOs in development of a novel agent intended for prevention or therapy of corresponding oral disorders.
Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Óleos Voláteis/farmacologia , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/isolamento & purificação , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/isolamento & purificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Candida/efeitos dos fármacos , Candida/isolamento & purificação , Linhagem Celular Tumoral , Citrus/química , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Melaleuca/química , Óleos Voláteis/administração & dosagem , Óleos Voláteis/isolamento & purificação , Piper nigrum/químicaRESUMO
Cobalt complexes with semi- and thiosemicarbazones of 8-quinolinecarboxaldehyde have been synthesized and characterized by X-ray diffraction analysis. These novel complexes and a previously synthesized cobalt complex with a selenium-based selenosemicarbazone ligand showed myeloid differentiation activity on all trans retinoic acid resistant HL-60 acute myeloid leukaemia cells. They also showed varying levels of cytotoxicity on five human tumor cell lines: cervix carcinoma cells (HeLa), lung adenocarcinoma cells (A549), colorectal adenocarcinoma cells (LS-174), breast carcinoma cells (MDA-MB-361), and chronic myeloid leukaemia (K562) as well as one normal human cell line: fetal lung fibroblast cells (MRC-5). Leukaemia differentiation was most strongly induced by a metal-free oxygen ligand and the selenium ligand, whilst the latter and the cobalt(ii) complex with an oxygen ligand showed the strongest dose-dependent cytotoxic activity. In four out of five investigated tumor cell lines, it was of the same order of magnitude as cisplatin. These best compounds, however, had lower toxicity on non-transformed MRC-5 cells than cisplatin.
RESUMO
Three new ruthenium(II)-arene complexes, namely [(η(6)-p-cymene)Ru(Me2dppz)Cl]PF6 (1), [(η(6)-benzene)Ru(Me2dppz)Cl]PF6 (2) and [(η(6)-p-cymene)Ru(aip)Cl]PF6 (3) (Me2dppz=11,12-dimethyldipyrido[3,2-a:2',3'-c]phenazine; aip=2-(9-anthryl)-1H-imidazo[4,5-f] [1,10] phenanthroline) have been synthesized and characterized using different spectroscopic techniques including elemental analysis. The complexes were found to be well soluble and stable in DMSO. The biological activity of the three complexes was tested in three different human cancer cell lines (A549, MDA-MB-231 and HeLa) and in one human non-cancerous cell line (MRC-5). Complexes 1 and 3, carrying η(6)-p-cymene as the arene ligand, were shown to be toxic in all cell lines in the low micromolar/subnanomolar range, with complex 1 being the most cytotoxic complex of the series. Flow cytometry analysis revealed that complex 1 caused concentration- and time-dependent arrest of the cell cycle in G2-M and S phases in HeLa cells. This event is followed by the accumulation of the sub-G1 DNA content after 48h, in levels higher than cisplatin and in the absence of phosphatidylserine externalization. Fluorescent microscopy and acridine orange/ethidium bromide staining revealed that complex 1 induced both apoptotic and necrotic cell morphology characteristics. Drug-accumulation and DNA-binding studies performed by inductively coupled plasma mass spectrometry in HeLa cells showed that the total ruthenium uptake increased in a time- and concentration-dependent manner, and that complex 1 accumulated more efficiently than cisplatin at equimolar concentrations. The introduction of a Me2dppz ligand into the ruthenium(II)-p-cymene scaffold was found to allow the discovery of a strongly cytotoxic complex with significantly higher cellular uptake and DNA-binding properties than cisplatin.
Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Substâncias Intercalantes/farmacologia , Compostos Organometálicos/farmacologia , Fenantrolinas/química , Rutênio/química , Células A549 , Antineoplásicos/síntese química , Cátions Bivalentes , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Complexos de Coordenação/síntese química , Cimenos , Relação Dose-Resposta a Droga , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HeLa , Humanos , Substâncias Intercalantes/síntese química , Monoterpenos/química , Compostos Organometálicos/síntese química , Fenazinas/química , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , SolubilidadeRESUMO
Ruthenium(II)-arene complexes are promising drug candidates for the therapy of solid tumors. In previous work, seven new compounds of the general formula [Ru(η6-p-cymene)(L1-7)Cl] were synthesized and characterized, of which the complex with L=isoquinoline-3-carboxylic acid (RuT7) was two times as active on HeLa cells compared to normal cell line MRC-5, as indicated by IC50 values determined after 48h of incubation (45.4±3.0 vs. 84.2±5.7µM, respectively). In the present study, cell cycle analysis of HeLa cells treated with RuT7 showed S phase arrest and an increase in sub-G1 population. The apoptotic potential of the title compound was confirmed with the Annexin V-FITC/PI assay together with a morphological evaluation of cells using fluorescent microscopy. Analysis of the intracellular accumulation of ruthenium showed 8.9ng Ru/106 cells after 6h of incubation. To gain further insight in the molecular mechanism of action of RuT7 on HeLa cells, a whole-transcriptome microarray gene expression analysis was performed. Analysis of functional categories and signaling and biochemical pathways associated with the response of HeLa cells to treatment with RuT7 showed that it leads the cells through the intrinsic (mitochondrial) apoptotic pathway, via indirect DNA damage due to the action of reactive oxygen species, and through direct DNA binding of RuT7. Statistical analysis for enrichment of gene sets associated with known drug-induced toxicities identified fewer associated toxicity profiles in RuT7-treated cells compared to cisplatin treatment. Altogether these results provide the basis for further development of RuT7 in animal and pre-clinical studies as a potential drug candidate.
Assuntos
Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Complexos de Coordenação , Regulação da Expressão Gênica/efeitos dos fármacos , Isoquinolinas , Rutênio , Transcriptoma/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Células HeLa , Humanos , Isoquinolinas/química , Isoquinolinas/farmacologia , Rutênio/química , Rutênio/farmacologiaRESUMO
Three square-planar complexes of Ni(II) with condensation derivative of 2-(diphenylphosphino)benzaldehyde and 4-phenylsemicarbazide and monodentate pseudohalides have been synthesized and characterized on the basis of the results of X-ray, NMR and IR spectroscopy and elemental analysis. Investigated complexes exhibited moderate antibacterial and cytotoxic activity. The most pronounced cytotoxic activity (in the range of cisplatin) to HeLa cell line was observed for ligand and all the complexes. Azido complex and ligand induced concentration dependent cell cycle arrest in the S phase, as well as decrease of percentage of cells in G1 phase, without significant increase of apoptotic fraction of cells. The interaction of the azido complex and ligand with CT-DNA results in changes in UV-Vis spectra typical for non-covalent bonding. The observed intrinsic binding constant of azido complex-CT-DNA and ligand-CT-DNA were 3.22 × 10(5) M(-1) and 2.79 × 10(5) M(-1). The results of DNA cleavage experiments showed that azido complex nicked supercoiled plasmid DNA.