Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Nano ; 16(7): 11251-11258, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35816615

RESUMO

Atomically engineered artificial lattices are a useful tool for simulating complex quantum phenomena, but have so far been limited to the study of Hamiltonians where electron-electron interactions do not play a role. However, it is precisely the regime in which these interactions do matter where computational times lend simulations a critical advantage over numerical methods. Here, we propose a platform for constructing artificial matter that relies on the confinement of field-emission resonances, a class of vacuum-localized discretized electronic states. We use atom manipulation of surface vacancies in a chlorine-terminated Cu(100) surface to reveal square patches of the underlying metal, thereby creating atomically precise potential wells that host particle-in-a-box modes. By adjusting the dimensions of the confining potential, we can access states with different quantum numbers, making these patches attractive candidates as quantum dots or artificial atoms. We demonstrate that the lifetime of electrons in these engineered states can be extended and tuned through modification of the confining potential, either via atomic assembly or by changing the tip-sample distance. We also demonstrate control over a finite range of state filling, a parameter which plays a key role in the evolution of quantum many-body states. We model the transport through the localized state to disentangle and quantify the lifetime-limiting processes, illustrating the critical dependence of the electron lifetime on the properties of the underlying bulk band structure. The interplay with the bulk bands gives rise to negative differential resistance, leading to possible applications in engineering custom atomic-scale resonant tunnelling diodes, which exhibit similar current-voltage characteristics.

2.
Science ; 372(6545): 964-968, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34045351

RESUMO

Full insight into the dynamics of a coupled quantum system depends on the ability to follow the effect of a local excitation in real-time. Here, we trace the free coherent evolution of a pair of coupled atomic spins by means of scanning tunneling microscopy. Rather than using microwave pulses, we use a direct-current pump-probe scheme to detect the local magnetization after a current-induced excitation performed on one of the spins. By making use of magnetic interaction with the probe tip, we are able to tune the relative precession of the spins. We show that only if their Larmor frequencies match, the two spins can entangle, causing angular momentum to be swapped back and forth. These results provide insight into the locality of electron spin scattering and set the stage for controlled migration of a quantum state through an extended spin lattice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA