Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 19(2): 182-188, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31844282

RESUMO

Stretchable optoelectronic materials are essential for applications in wearable electronics, human-machine interfaces and soft robots. However, intrinsically stretchable optoelectronic devices such as light-emitting capacitors usually require high driving alternating voltages and excitation frequencies to achieve sufficient luminance in ambient lighting conditions. Here, we present a healable, low-field illuminating optoelectronic stretchable (HELIOS) device by introducing a transparent, high permittivity polymeric dielectric material. The HELIOS device turns on at an alternating voltage of 23 V and a frequency below 1 kHz, safe operating conditions for human-machine interactions. We achieved a brightness of 1,460 cd m-2 at 2.5 V µm-1 with stable illumination demonstrated up to a maximum of 800% strain. The materials also self-healed mechanically and electronically from punctures or when severed. We further demonstrate various HELIOS light-emitting capacitor devices in environment sensing using optical feedback. Moreover, our devices can be powered wirelessly, potentially enabling applications for untethered damage-resilient soft robots.

2.
Soft Matter ; 15(36): 7137-7144, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31435627

RESUMO

Instabilities in a thin sheet are ubiquitous and can be induced by various stimuli, such as a uniaxial force, liquid-vapor surface tension, etc. This paper investigates voltage-induced instabilities in a membrane of a dielectric elastomer. Instabilities including buckling, wrinkling, and crumpling are observed in the experiments. The prestretches of the dielectric elastomer are found to play a significant role in determining its instability mode. When the prestretch is small, intermediate, or large, the membrane may undergo buckling, wrinkling, or crumpling, respectively. Finite element analysis is conducted to study these instability modes, and the simulations are well consistent with the experimental observations. We hope that this investigation of mechanical and physical properties of dielectric elastomers can enhance their extensive and significant applications in soft devices and soft robots.

3.
Soft Matter ; 13(16): 2942-2951, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28357441

RESUMO

A membrane of a dielectric elastomer may undergo electromechanical phase transition from the flat to wrinkled state, when the applied voltage reaches a critical value. The wrinkled region is observed to expand at the expense of the flat region during the phase transition. In this paper, we report on a dynamic pattern of wrinkles in a circular membrane of a dielectric elastomer. During phase transition, both the flat and wrinkled regions move interchangeably in the membrane. The radial prestretch is found to significantly affect electromechanical phase transition. For example, a membrane with a small prestretch can exhibit a dynamic pattern of wrinkles, which is essentially related to snap-through instability. However, a membrane with a large prestretch undergoes continuous phase transition, without exhibiting a dynamic pattern. An analytical model is developed to interpret these experimental phenomena. Finite element simulations are performed to predict the wrinkle morphology, especially the coexistence of flat and wrinkled regions. Both the theoretical calculations and finite element simulations are qualitatively consistent with the experiments. Additionally, we observe another type of electromechanical behavior involving a dynamic pattern of wrinkles with different wavelengths. The membrane first undergoes continuous transition from the flat to wrinkled state, followed by discontinuous transition from one wrinkled state to another. These results may inspire new applications for dielectric elastomers such as on-demand patterning of wrinkles for microfluidics and stretchable electronics.

4.
J Acoust Soc Am ; 138(3): EL236-41, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26428819

RESUMO

A duct silencer with tunable acoustic characteristics is presented in this paper. Dielectric elastomer, a smart material with lightweight, high elastic energy density and large deformation under high direct current/alternating current voltages, was used to fabricate this duct silencer. The acoustic performances and tunable mechanisms of this duct silencer were experimentally investigated. It was found that all the resonance peaks of this duct silencer could be adjusted using external control signals without any additional mechanical part. The physics of the tunable mechanism is further discussed based on the electro-mechanical interactions using finite element analysis. The present promising results also provide insight into the appropriateness of the duct silencer for possible use as next generation acoustic treatment device to replace the traditional acoustic treatment.


Assuntos
Acústica/instrumentação , Ar Condicionado/instrumentação , Elastômeros , Eletrônica/instrumentação , Ruído/prevenção & controle , Absorção Fisico-Química , Ar Condicionado/efeitos adversos , Elasticidade , Desenho de Equipamento , Propriedades de Superfície , Vibração
5.
Nat Biomed Eng ; 5(10): 1217-1227, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34654900

RESUMO

Monitoring surgical wounds post-operatively is necessary to prevent infection, dehiscence and other complications. However, the monitoring of deep surgical sites is typically limited to indirect observations or to costly radiological investigations that often fail to detect complications before they become severe. Bioelectronic sensors could provide accurate and continuous monitoring from within the body, but the form factors of existing devices are not amenable to integration with sensitive wound tissues and to wireless data transmission. Here we show that multifilament surgical sutures functionalized with a conductive polymer and incorporating pledgets with capacitive sensors operated via radiofrequency identification can be used to monitor physicochemical states of deep surgical sites. We show in live pigs that the sutures can monitor wound integrity, gastric leakage and tissue micromotions, and in rodents that the healing outcomes are equivalent to those of medical-grade sutures. Battery-free wirelessly operated bioelectronic sutures may facilitate post-surgical monitoring in a wide range of interventions.


Assuntos
Deiscência da Ferida Operatória , Ferida Cirúrgica , Animais , Técnicas de Sutura , Suturas , Suínos , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA