Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Development ; 151(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223992

RESUMO

The generation of the post-cranial embryonic body relies on the coordinated production of spinal cord neurectoderm and presomitic mesoderm cells from neuromesodermal progenitors (NMPs). This process is orchestrated by pro-neural and pro-mesodermal transcription factors that are co-expressed in NMPs together with Hox genes, which are essential for axial allocation of NMP derivatives. NMPs reside in a posterior growth region, which is marked by the expression of Wnt, FGF and Notch signalling components. Although the importance of Wnt and FGF in influencing the induction and differentiation of NMPs is well established, the precise role of Notch remains unclear. Here, we show that the Wnt/FGF-driven induction of NMPs from human embryonic stem cells (hESCs) relies on Notch signalling. Using hESC-derived NMPs and chick embryo grafting, we demonstrate that Notch directs a pro-mesodermal character at the expense of neural fate. We show that Notch also contributes to activation of HOX gene expression in human NMPs, partly in a non-cell-autonomous manner. Finally, we provide evidence that Notch exerts its effects via the establishment of a negative-feedback loop with FGF signalling.


Assuntos
Padronização Corporal , Genes Homeobox , Animais , Embrião de Galinha , Humanos , Padronização Corporal/genética , Diferenciação Celular/genética , Mesoderma/metabolismo , Medula Espinal , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento
2.
Gut ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816188

RESUMO

OBJECTIVE: Hirschsprung disease (HSCR) is a severe congenital disorder affecting 1:5000 live births. HSCR results from the failure of enteric nervous system (ENS) progenitors to fully colonise the gastrointestinal tract during embryonic development. This leads to aganglionosis in the distal bowel, resulting in disrupted motor activity and impaired peristalsis. Currently, the only viable treatment option is surgical resection of the aganglionic bowel. However, patients frequently suffer debilitating, lifelong symptoms, with multiple surgical procedures often necessary. Hence, alternative treatment options are crucial. An attractive strategy involves the transplantation of ENS progenitors generated from human pluripotent stem cells (hPSCs). DESIGN: ENS progenitors were generated from hPSCs using an accelerated protocol and characterised, in detail, through a combination of single-cell RNA sequencing, protein expression analysis and calcium imaging. We tested ENS progenitors' capacity to integrate and affect functional responses in HSCR colon, after ex vivo transplantation to organotypically cultured patient-derived colonic tissue, using organ bath contractility. RESULTS: We found that our protocol consistently gives rise to high yields of a cell population exhibiting transcriptional and functional hallmarks of early ENS progenitors. Following transplantation, hPSC-derived ENS progenitors integrate, migrate and form neurons/glia within explanted human HSCR colon samples. Importantly, the transplanted HSCR tissue displayed significantly increased basal contractile activity and increased responses to electrical stimulation compared with control tissue. CONCLUSION: Our findings demonstrate, for the first time, the potential of hPSC-derived ENS progenitors to repopulate and increase functional responses in human HSCR patient colonic tissue.

3.
Development ; 148(6)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33658223

RESUMO

The anteroposterior axial identity of motor neurons (MNs) determines their functionality and vulnerability to neurodegeneration. Thus, it is a crucial parameter in the design of strategies aiming to produce MNs from human pluripotent stem cells (hPSCs) for regenerative medicine/disease modelling applications. However, the in vitro generation of posterior MNs corresponding to the thoracic/lumbosacral spinal cord has been challenging. Although the induction of cells resembling neuromesodermal progenitors (NMPs), the bona fide precursors of the spinal cord, offers a promising solution, the progressive specification of posterior MNs from these cells is not well defined. Here, we determine the signals guiding the transition of human NMP-like cells toward thoracic ventral spinal cord neurectoderm. We show that combined WNT-FGF activities drive a posterior dorsal pre-/early neural state, whereas suppression of TGFß-BMP signalling pathways promotes a ventral identity and neural commitment. Based on these results, we define an optimised protocol for the generation of thoracic MNs that can efficiently integrate within the neural tube of chick embryos. We expect that our findings will facilitate the comparison of hPSC-derived spinal cord cells of distinct axial identities.


Assuntos
Diferenciação Celular/genética , Mesoderma/crescimento & desenvolvimento , Células-Tronco Neurais/metabolismo , Medula Espinal/crescimento & desenvolvimento , Animais , Padronização Corporal/genética , Proteínas Morfogenéticas Ósseas/genética , Linhagem da Célula/genética , Embrião de Galinha , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Mesoderma/metabolismo , Neurônios Motores/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Pluripotentes/citologia , Transdução de Sinais/genética , Medula Espinal/metabolismo , Fator de Crescimento Transformador beta/genética , Proteínas Wnt/genética
4.
Elife ; 112022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36154671

RESUMO

The neural crest (NC) is an important multipotent embryonic cell population and its impaired specification leads to various developmental defects, often in an anteroposterior (A-P) axial level-specific manner. The mechanisms underlying the correct A-P regionalisation of human NC cells remain elusive. Recent studies have indicated that trunk NC cells, the presumed precursors of childhood tumour neuroblastoma, are derived from neuromesodermal-potent progenitors of the postcranial body. Here we employ human embryonic stem cell differentiation to define how neuromesodermal progenitor (NMP)-derived NC cells acquire a posterior axial identity. We show that TBXT, a pro-mesodermal transcription factor, mediates early posterior NC/spinal cord regionalisation together with WNT signalling effectors. This occurs by TBXT-driven chromatin remodelling via its binding in key enhancers within HOX gene clusters and other posterior regulator-associated loci. This initial posteriorisation event is succeeded by a second phase of trunk HOX gene control that marks the differentiation of NMPs toward their TBXT-negative NC/spinal cord derivatives and relies predominantly on FGF signalling. Our work reveals a previously unknown role of TBXT in influencing posterior NC fate and points to the existence of temporally discrete, cell type-dependent modes of posterior axial identity control.


Assuntos
Mesoderma , Crista Neural , Diferenciação Celular/genética , Humanos , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt
5.
Curr Protoc ; 1(6): e137, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34102038

RESUMO

The intrinsic innervation of the gastrointestinal (GI) tract is comprised of enteric neurons and glia, which are buried within the wall of the bowel and organized into two concentric plexuses that run along the length of the gut forming the enteric nervous system (ENS). The ENS regulates vital GI functions including gut motility, blood flow, fluid secretion, and absorption and thus maintains gut homeostasis. During vertebrate development it originates predominantly from the vagal neural crest (NC), a multipotent cell population that emerges from the caudal hindbrain region, migrates to and within the gut to ultimately generate neurons and glia in response to gut-derived signals. Loss of GI innervation due to congenital or acquired defects in ENS development causes enteric neuropathies which lack curative treatment. Human pluripotent stem cells (hPSCs) offer a promising in vitro source of enteric neurons for modeling human ENS development and pathology and potential use in cell therapy applications. Here we describe in detail a differentiation strategy for the derivation of enteric neural progenitors and neurons from hPSCs through a vagal NC intermediate. Using a combination of instructive signals and retinoic acid in a dose/time dependent manner, vagal NC cells commit into the ENS lineage and develop into enteric neurons and glia upon culture in neurotrophic media. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of vagal neural crest/early ENS progenitors from hPSCs Basic Protocol 2: Differentiation of hPSC-derived vagal NC/early ENS progenitors to enteric neurons and glia.


Assuntos
Sistema Nervoso Entérico , Células-Tronco Pluripotentes , Diferenciação Celular , Humanos , Crista Neural , Neurônios
6.
Stem Cell Reports ; 15(3): 557-565, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32857978

RESUMO

The enteric nervous system (ENS) is derived primarily from the vagal neural crest, a migratory multipotent cell population emerging from the dorsal neural tube between somites 1 and 7. Defects in the development and function of the ENS cause a range of enteric neuropathies, including Hirschsprung disease. Little is known about the signals that specify early ENS progenitors, limiting progress in the generation of enteric neurons from human pluripotent stem cells (hPSCs) to provide tools for disease modeling and regenerative medicine for enteric neuropathies. We describe the efficient and accelerated generation of ENS progenitors from hPSCs, revealing that retinoic acid is critical for the acquisition of vagal axial identity and early ENS progenitor specification. These ENS progenitors generate enteric neurons in vitro and, following in vivo transplantation, achieved long-term colonization of the ENS in adult mice. Thus, hPSC-derived ENS progenitors may provide the basis for cell therapy for defects in the ENS.


Assuntos
Sistema Nervoso Entérico/citologia , Crista Neural/citologia , Células-Tronco Neurais/citologia , Tretinoína/farmacologia , Animais , Linhagem Celular , Humanos , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Nervo Vago/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA