Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Clin Infect Dis ; 76(6): 1022-1029, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36358021

RESUMO

BACKGROUND: This prospective study characterizes the structural and metabolic cerebral correlates of cognitive impairments found in a preclinical setting that considers the lifestyle of young European men exposed to human immunodeficiency virus (HIV), including recreational drugs. METHODS: Simultaneous structural brain magnetic resonance imaging (MRI) and positron emission tomography using [18F]-fluorodeoxyglucose (FDG-PET) were acquired on a hybrid PET-MRI system in 23 asymptomatic young men having sex with men with HIV (HIVMSM; mean age, 33.6 years [range, 23-60 years]; normal CD4+ cell count, undetectable viral load). Neuroimaging data were compared with that of 26 young seronegative men under HIV preexposure prophylaxis (PrEPMSM), highly well matched for age and lifestyle, and to 23 matched young seronegative men (controls). A comprehensive neuropsychological assessment was also administered to the HIVMSM and PrEPMSM participants. RESULTS: HIVMSM had lower performances in executive, attentional, and working memory functions compared to PrEPMSM. No structural or metabolic differences were found between those 2 groups. Compared to controls, HIVMSM and PrEPMSM exhibited a common hypometabolism in the prefrontal cortex that correlated with the level of recreational drug use. No structural brain abnormality was found. CONCLUSIONS: Abnormalities of brain metabolism in our population of young HIVMSM mainly relate to recreational drug use rather than HIV per se. A complex interplay between recreational drugs and HIV might nevertheless be involved in the cognitive impairments observed in this population.


Assuntos
Disfunção Cognitiva , Infecções por HIV , Drogas Ilícitas , Masculino , Humanos , Adulto , HIV , Drogas Ilícitas/efeitos adversos , Drogas Ilícitas/metabolismo , Estudos Prospectivos , Cognição , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Disfunção Cognitiva/patologia , Fluordesoxiglucose F18/metabolismo , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Infecções por HIV/patologia , Testes Neuropsicológicos
2.
Neuroimage ; 265: 119770, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462732

RESUMO

Children have more difficulty perceiving speech in noise than adults. Whether this difficulty relates to an immature processing of prosodic or linguistic elements of the attended speech is still unclear. To address the impact of noise on linguistic processing per se, we assessed how babble noise impacts the cortical tracking of intelligible speech devoid of prosody in school-aged children and adults. Twenty adults and twenty children (7-9 years) listened to synthesized French monosyllabic words presented at 2.5 Hz, either randomly or in 4-word hierarchical structures wherein 2 words formed a phrase at 1.25 Hz, and 2 phrases formed a sentence at 0.625 Hz, with or without babble noise. Neuromagnetic responses to words, phrases and sentences were identified and source-localized. Children and adults displayed significant cortical tracking of words in all conditions, and of phrases and sentences only when words formed meaningful sentences. In children compared with adults, the cortical tracking was lower for all linguistic units in conditions without noise. In the presence of noise, the cortical tracking was similarly reduced for sentence units in both groups, but remained stable for phrase units. Critically, when there was noise, adults increased the cortical tracking of monosyllabic words in the inferior frontal gyri and supratemporal auditory cortices but children did not. This study demonstrates that the difficulties of school-aged children in understanding speech in a multi-talker background might be partly due to an immature tracking of lexical but not supra-lexical linguistic units.


Assuntos
Percepção da Fala , Fala , Adulto , Humanos , Criança , Percepção da Fala/fisiologia , Percepção Auditiva , Ruído , Idioma
3.
Respir Res ; 24(1): 254, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880678

RESUMO

BACKGROUND: Fibroblast activation protein-α (FAPα) is a marker of activated fibroblasts that can be selectively targeted by an inhibitor (FAPI) and visualised by PET/CT imaging. We evaluated whether the measurement of FAPα in bronchoalveolar lavage fluids (BALF) and the uptake of FAPI by PET/CT could be used as biomarkers of fibrogenesis. METHODS: The dynamics of lung uptake of 18F-labeled FAPI ([18F]FAPI-74) was assessed in the bleomycin mouse model at various time points and using different concentrations of bleomycin by PET/CT. FAPα was measured in BALFs from these bleomycin-treated and control mice. FAPα levels were also assessed in BALFs from controls and patients with idiopathic pulmonary fibrosis (IPF). RESULTS: Bleomycin-treated mice presented a significantly higher uptake of [18F]FAPI-74 during lung fibrinogenesis (days 10 and 16 after instillation) compared to control mice. No significant difference was observed at initial inflammatory phase (3 days) and when fibrosis was already established (28 days). [18F]FAPI-74 tracer was unable to show a dose-response to bleomycin treatment. On the other hand, BALF FAPα levels were steeply higher in bleomycin-treated mice at day 10 and a significant dose-response effect was observed. Moreover, FAPα levels were strongly correlated with lung fibrosis as measured by the modified Aschroft histological analysis, hydroxyproline and the percentage of weight loss. Importantly, higher levels of FAPα were observed in IPF patients where the disease was progressing as compared to stable patients and controls. Moreover, patients with FAPα BALF levels higher than 192.5 pg/mL presented a higher risk of progression, transplantation or death compared to patients with lower levels. CONCLUSIONS: Our preclinical data highlight a specific increase of [18F]FAPI-74 lung uptake during the fibrotic phase of the bleomycin murine model. The measurement of FAPα in BALF appears to be a promising marker of the fibrotic activity in preclinical models of lung fibrosis and in IPF patients. Further studies are required to confirm the role of FAPα in BALF as biomarker of IPF activity and assess the relationship between FAPα levels in BALF and [18F]FAPI-74 uptake on PET/CT in patients with fibrotic lung disease.


Assuntos
Fibrose Pulmonar Idiopática , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Camundongos , Animais , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose , Líquido da Lavagem Broncoalveolar , Bleomicina/efeitos adversos
4.
Epilepsia ; 64(6): 1409-1423, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36869701

RESUMO

Due to heterogenous seizure semiology and poor contribution of scalp electroencephalography (EEG) signals, insular epilepsy requires use of the appropriate diagnostic tools for its diagnosis and characterization. The deep location of the insula also presents surgical challenges. The aim of this article is to review the current diagnostic and therapeutic tools and their contribution to the management of insular epilepsy. Magnetic resonance imaging (MRI), isotopic imaging, neurophysiological imaging, and genetic testing should be used and interpretated with caution. Isotopic imaging and scalp EEG have demonstrated a lower value in epilepsy from insular compared to temporal origin, which increases the interest of functional MRI and magnetoencephalography. Intracranial recording with stereo-electroencephalography (SEEG) is often required. The insular cortex, being highly connected and deeply located under highly functional areas, is difficult to reach, and its ablative surgery raises functional issues. Tailored resection based on SEEG or alternative curative treatments, such as radiofrequency thermocoagulation, laser interstitial thermal therapy, or stereotactic radiosurgery, have produced encouraging results. The management of insular epilepsy has benefited from major advances in the last years. Perspectives for diagnostic and therapeutic procedures will contribute to better management of this complex form of epilepsy.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Córtex Cerebral , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/cirurgia , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Epilepsia/terapia , Magnetoencefalografia , Imageamento por Ressonância Magnética/métodos
5.
Radiology ; 304(2): 429-434, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35503013

RESUMO

Background Magnetoencephalography (MEG) is an established method used to detect and localize focal interictal epileptiform discharges (IEDs). Current MEG systems house hundreds of cryogenic sensors in a rigid, one-size-fits-all helmet, which results in several limitations, particularly in children. Purpose To determine if on-scalp MEG based on optically pumped magnetometers (OPMs) alleviates the main limitations of cryogenic MEG. Materials and Methods In this prospective single-center study conducted in a tertiary university teaching hospital, participants underwent cryogenic (102 magnetometers, 204 planar gradiometers) and on-scalp (32 OPMs) MEG. The two modalities for the detection and localization of IEDs were compared. The t test was used to compare IED amplitude and signal-to-noise ratio (SNR). Distributed source modeling was performed on OPM-based and cryogenic MEG data. Results Five children (median age, 9.4 years [range, 5-11 years]; four girls) with self-limited idiopathic (n = 3) or refractory (n = 2) focal epilepsy were included. IEDs were identified in all five children with comparable sensor topographies for both MEG devices. IED amplitudes were 2.3 (7.2 of 3.1) to 4.6 (3.2 of 0.7) times higher (P < .001) with on-scalp MEG, and the SNR was 27% (16.7 of 13.2) to 60% (12.8 of 8.0) higher (P value range: .001-.009) with on-scalp MEG in all but one participant (P = .93), whose head movements created pronounced motion artifacts. The neural source of averaged IEDs was located at approximately 5 mm (n = 3) or higher (8.3 mm, n = 1; 15.6 mm, n = 1) between on-scalp and cryogenic MEG. Conclusion Despite the limited number of sensors and scalp coverage, on-scalp magnetoencephalography (MEG) based on optically pumped magnetometers helped detect interictal epileptiform discharges in school-aged children with epilepsy with a higher amplitude, higher signal-to-noise ratio, and similar localization value compared with conventional cryogenic MEG. Online supplemental material is available for this article. © RSNA, 2022 See also the editorial by Widjaja in this issue.


Assuntos
Epilepsias Parciais , Epilepsia , Encéfalo , Criança , Eletroencefalografia , Epilepsia/diagnóstico , Feminino , Humanos , Magnetoencefalografia/métodos , Estudos Prospectivos , Couro Cabeludo
6.
Neuroimage ; 240: 118368, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34242786

RESUMO

This magnetoencephalography (MEG) study investigates how procedural sequence learning performance is related to prior brain resting-state functional connectivity (rsFC), and to what extent sequence learning induces rapid changes in brain rsFC in school-aged children. Procedural learning was assessed in 30 typically developing children (mean age ± SD: 9.99 years ± 1.35) using a serial reaction time task (SRTT). During SRTT, participants touched as quickly and accurately as possible a stimulus sequentially or randomly appearing in one of the quadrants of a touchscreen. Band-limited power envelope correlation (brain rsFC) was applied to MEG data acquired at rest pre- and post-learning. Correlation analyses were performed between brain rsFC and sequence-specific learning or response time indices. Stronger pre-learning interhemispheric rsFC between inferior parietal and primary somatosensory/motor areas correlated with better subsequent sequence learning performance and faster visuomotor response time. Faster response time was associated with post-learning decreased rsFC within the dorsal extra-striate visual stream and increased rsFC between temporo-cerebellar regions. In school-aged children, variations in functional brain architecture at rest within the sensorimotor network account for interindividual differences in sequence learning and visuomotor performance. After learning, rapid adjustments in functional brain architecture are associated with visuomotor performance but not sequence learning skills.


Assuntos
Encéfalo/fisiologia , Aprendizagem/fisiologia , Magnetoencefalografia/métodos , Rede Nervosa/fisiologia , Tempo de Reação/fisiologia , Descanso/fisiologia , Encéfalo/diagnóstico por imagem , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/diagnóstico por imagem , Estimulação Luminosa/métodos
7.
Hum Brain Mapp ; 42(16): 5334-5344, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34523778

RESUMO

This magnetoencephalography (MEG) study addresses (i) how Friedreich ataxia (FRDA) affects the sub-second dynamics of resting-state brain networks, (ii) the main determinants of their dynamic alterations, and (iii) how these alterations are linked with FRDA-related changes in resting-state functional brain connectivity (rsFC) over long timescales. For that purpose, 5 min of resting-state MEG activity were recorded in 16 FRDA patients (mean age: 27 years, range: 12-51 years; 10 females) and matched healthy subjects. Transient brain network dynamics was assessed using hidden Markov modeling (HMM). Post hoc median-split, nonparametric permutations and Spearman rank correlations were used for statistics. In FRDA patients, a positive correlation was found between the age of symptoms onset (ASO) and the temporal dynamics of two HMM states involving the posterior default mode network (DMN) and the temporo-parietal junctions (TPJ). FRDA patients with an ASO <11 years presented altered temporal dynamics of those two HMM states compared with FRDA patients with an ASO > 11 years or healthy subjects. The temporal dynamics of the DMN state also correlated with minute-long DMN rsFC. This study demonstrates that ASO is the main determinant of alterations in the sub-second dynamics of posterior associative neocortices in FRDA patients and substantiates a direct link between sub-second network activity and functional brain integration over long timescales.


Assuntos
Córtex Cerebral/fisiopatologia , Conectoma , Ataxia de Friedreich/fisiopatologia , Magnetoencefalografia , Rede Nervosa/fisiopatologia , Adolescente , Adulto , Idade de Início , Córtex Cerebral/diagnóstico por imagem , Criança , Feminino , Ataxia de Friedreich/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
8.
Hum Brain Mapp ; 42(3): 626-643, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33242237

RESUMO

The pathophysiology of cognitive dysfunction in multiple sclerosis (MS) is still unclear. This magnetoencephalography (MEG) study investigates the impact of MS on brain resting-state functional connectivity (rsFC) and its relationship to disability and cognitive impairment. We investigated rsFC based on power envelope correlation within and between different frequency bands, in a large cohort of participants consisting of 99 MS patients and 47 healthy subjects. Correlations were investigated between rsFC and outcomes on disability, disease duration and 7 neuropsychological scores within each group, while stringently correcting for multiple comparisons and possible confounding factors. Specific dysconnections correlating with MS-induced physical disability and disease duration were found within the sensorimotor and language networks, respectively. Global network-level reductions in within- and cross-network rsFC were observed in the default-mode network. Healthy subjects and patients significantly differed in their scores on cognitive fatigue and verbal fluency. Healthy subjects and patients showed different correlation patterns between rsFC and cognitive fatigue or verbal fluency, both of which involved a shift in patients from the posterior default-mode network to the language network. Introducing electrophysiological rsFC in a regression model of verbal fluency and cognitive fatigue in MS patients significantly increased the explained variance compared to a regression limited to structural MRI markers (relative thalamic volume and lesion load). This MEG study demonstrates that MS induces distinct changes in the resting-state functional brain architecture that relate to disability, disease duration and specific cognitive functioning alterations. It highlights the potential value of electrophysiological intrinsic rsFC for monitoring the cognitive impairment in patients with MS.


Assuntos
Córtex Cerebral/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Conectoma , Rede de Modo Padrão/fisiopatologia , Esclerose Múltipla/fisiopatologia , Rede Nervosa/fisiopatologia , Adulto , Disfunção Cognitiva/etiologia , Feminino , Humanos , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Índice de Gravidade de Doença
9.
Hum Brain Mapp ; 42(5): 1376-1390, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33247542

RESUMO

Working memory (WM) problems are frequently present in people with multiple sclerosis (MS). Even though hippocampal damage has been repeatedly shown to play an important role, the underlying neurophysiological mechanisms remain unclear. This study aimed to investigate the neurophysiological underpinnings of WM impairment in MS using magnetoencephalography (MEG) data from a visual-verbal 2-back task. We analysed MEG recordings of 79 MS patients and 38 healthy subjects through event-related fields and theta (4-8 Hz) and alpha (8-13 Hz) oscillatory processes. Data was source reconstructed and parcellated based on previous findings in the healthy subject sample. MS patients showed a smaller maximum theta power increase in the right hippocampus between 0 and 400 ms than healthy subjects (p = .014). This theta power increase value correlated negatively with reaction time on the task in MS (r = -.32, p = .029). Evidence was provided that this relationship could not be explained by a 'common cause' confounding relationship with MS-related neuronal damage. This study provides the first neurophysiological evidence of the influence of hippocampal dysfunction on WM performance in MS.


Assuntos
Disfunção Cognitiva/fisiopatologia , Hipocampo/fisiopatologia , Memória de Curto Prazo/fisiologia , Esclerose Múltipla/fisiopatologia , Ritmo Teta/fisiologia , Adulto , Disfunção Cognitiva/etiologia , Feminino , Humanos , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/complicações
10.
Eur J Nucl Med Mol Imaging ; 48(6): 1890-1901, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33398411

RESUMO

OBJECTIVES: Sudden loss of smell is a very common symptom of coronavirus disease 19 (COVID-19). This study characterizes the structural and metabolic cerebral correlates of dysosmia in patients with COVID-19. METHODS: Structural brain magnetic resonance imaging (MRI) and positron emission tomography with [18F]-fluorodeoxyglucose (FDG-PET) were prospectively acquired simultaneously on a hybrid PET-MR in 12 patients (2 males, 10 females, mean age: 42.6 years, age range: 23-60 years) with sudden dysosmia and positive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on nasopharyngeal swab specimens. FDG-PET data were analyzed using a voxel-based approach and compared with that of a group of healthy subjects. RESULTS: Bilateral blocking of the olfactory cleft was observed in six patients, while subtle olfactory bulb asymmetry was found in three patients. No MRI signal abnormality downstream of the olfactory tract was observed. Decrease or increase in glucose metabolism abnormalities was observed (p < .001 uncorrected, k ≥ 50 voxels) in core olfactory and high-order neocortical areas. A modulation of regional cerebral glucose metabolism by the severity and the duration of COVID-19-related dysosmia was disclosed using correlation analyses. CONCLUSIONS: This PET-MR study suggests that sudden loss of smell in COVID-19 is not related to central involvement due to SARS-CoV-2 neuroinvasiveness. Loss of smell is associated with subtle cerebral metabolic changes in core olfactory and high-order cortical areas likely related to combined processes of deafferentation and active functional reorganization secondary to the lack of olfactory stimulation.


Assuntos
Anosmia , COVID-19 , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , Olfato , Tomografia Computadorizada por Raios X , Adulto Jovem
11.
Eur J Nucl Med Mol Imaging ; 48(6): 1773-1784, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33398412

RESUMO

PURPOSE: This preclinical study aims to evaluate the extent to which a change in prostate-specific membrane antigen (PSMA) expression of castration-resistant prostate cancer (CRPC) following standard treatment is reflected in [18F]JK-PSMA-7 PET/CT. METHODS: Castrated mice supplemented with testosterone implant were xenografted with human LNCaP CRPC. After appropriate tumour growth, androgen deprivation therapy (ADT) was carried out by the removal of the implant followed by a single injection of docetaxel (400 µg/20-g mouse) 2 weeks later. [18F]JK-PSMA-7 PET/CT were performed before ADT, then before and at days 12, 26, 47 and 69 after docetaxel administration. The [18F]JK-PSMA-7 PET data were compared to corresponding unspecific metabolic [18F]FDG PET/CT and ex vivo quantification of PSMA expression estimated by flow cytometry on repeated tumour biopsies. RESULTS: ADT alone had no early effect on LNCaP tumours that pursued their progression. Until day 12 post-docetaxel, the [18F]JK-PSMA7 uptake was significantly higher than that of [18F]FDG, indicating the persistence of PSMA expression at those time points. From day 26 onwards when the tumours were rapidly expanding, both [18F]JK-PSMA7 and [18F]FDG uptake continuously decreased although the decrease in [18F]JK-PSMA uptake was markedly faster. The fraction of PSMA-positive cells in tumour biopsies decreased similarly over time to reach a non-specific level after the same time period. CONCLUSION: Applying PSMA-based imaging for therapy monitoring in patients with CRPC should be considered with caution since a reduction in [18F]JK-PSMA-7 PET uptake after successive ADT and chemotherapy may be related to downregulation of PSMA expression in dedifferentiated and rapidly proliferating tumour cells.


Assuntos
Neoplasias da Próstata , Antagonistas de Androgênios , Animais , Fluordesoxiglucose F18 , Xenoenxertos , Humanos , Masculino , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico
12.
J Surg Oncol ; 123(8): 1773-1783, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33751583

RESUMO

BACKGROUND AND OBJECTIVES: The histological growth pattern (HGP) represents a strong prognostic factor in patients undergoing surgery for colorectal liver metastases (CRLM). We evaluated whether the combination of HGP with clinico-metabolic parameters could improve its prognostic value. METHODS: In a series of 108 patients undergoing resection of CRLM, the HGP of CRLM was scored according to international guidelines. Baseline clinico-metabolic clinical status was evaluated using a metabolic-Clinical Risk Score (mCRS), combining traditional Memorial Sloan Kettering-CRS parameters with the tumor-to-liver glucose uptake ratio as measured with 18 Fluorodeoxyglucose/positron emission tomography. RESULTS: In patients with desmoplastic HGP (DHGP) CRLM (20% of all patients), 5- and 10-years overall survival (OS) and disease free survival (DFS) were 66% and 43% and 37% and 24.5%, as compared with 35% and 21% and 11% and 11% in the non-DHGP group (p = 0.07 and 0.054). Among DHGP patients, those with a low-risk mCRS had improved postoperative outcomes, 5- and 10-years OS and DFS reaching 83.3% and 62.5% and 50% and 33%, as compared with 18% and 0% and 0% and 0% in high-risk mCRS patients (p = 0.007 and 0.003). In contrast, mCRS did not influence postoperative survivals in non-DHGP patients. CONCLUSIONS: Combining the clinico-metabolic characteristics with the HGP may improve prognostication in patients undergoing surgery for CRLM.


Assuntos
Neoplasias Colorretais/patologia , Hepatectomia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Idoso , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Feminino , Humanos , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Valor Preditivo dos Testes , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida
13.
J Neurosci ; 39(15): 2938-2950, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30745419

RESUMO

In multitalker backgrounds, the auditory cortex of adult humans tracks the attended speech stream rather than the global auditory scene. Still, it is unknown whether such preferential tracking also occurs in children whose speech-in-noise (SiN) abilities are typically lower compared with adults. We used magnetoencephalography (MEG) to investigate the frequency-specific cortical tracking of different elements of a cocktail party auditory scene in 20 children (age range, 6-9 years; 8 females) and 20 adults (age range, 21-40 years; 10 females). During MEG recordings, subjects attended to four different 5 min stories, mixed with different levels of multitalker background at four signal-to-noise ratios (SNRs; noiseless, +5, 0, and -5 dB). Coherence analysis quantified the coupling between the time courses of the MEG activity and attended speech stream, multitalker background, or global auditory scene, respectively. In adults, statistically significant coherence was observed between MEG signals originating from the auditory system and the attended stream at <1, 1-4, and 4-8 Hz in all SNR conditions. Children displayed similar coupling at <1 and 1-4 Hz, but increasing noise impaired the coupling more strongly than in adults. Also, children displayed drastically lower coherence at 4-8 Hz in all SNR conditions. These results suggest that children's difficulties to understand speech in noisy conditions are related to an immature selective cortical tracking of the attended speech streams. Our results also provide unprecedented evidence for an acquired cortical tracking of speech at syllable rate and argue for a progressive development of SiN abilities in humans.SIGNIFICANCE STATEMENT Behaviorally, children are less proficient than adults at understanding speech-in-noise. Here, neuromagnetic signals were recorded while healthy adults and typically developing 6- to 9-year-old children attended to a speech stream embedded in a multitalker background noise with varying intensity. Results demonstrate that auditory cortices of both children and adults selectively track the attended speaker's voice rather than the global acoustic input at phrasal and word rates. However, increments of noise compromised the tracking significantly more in children than in adults. Unexpectedly, children displayed limited tracking of both the attended voice and the global acoustic input at the 4-8 Hz syllable rhythm. Thus, both speech-in-noise abilities and cortical tracking of speech syllable repetition rate seem to mature later in adolescence.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Ruído , Percepção da Fala/fisiologia , Adolescente , Adulto , Envelhecimento/psicologia , Córtex Auditivo , Mapeamento Encefálico , Criança , Feminino , Humanos , Magnetoencefalografia , Masculino , Razão Sinal-Ruído , Adulto Jovem
14.
J Cogn Neurosci ; 32(5): 877-888, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31933439

RESUMO

Discrimination of words from nonspeech sounds is essential in communication. Still, how selective attention can influence this early step of speech processing remains elusive. To answer that question, brain activity was recorded with magnetoencephalography in 12 healthy adults while they listened to two sequences of auditory stimuli presented at 2.17 Hz, consisting of successions of one randomized word (tagging frequency = 0.54 Hz) and three acoustically matched nonverbal stimuli. Participants were instructed to focus their attention on the occurrence of a predefined word in the verbal attention condition and on a nonverbal stimulus in the nonverbal attention condition. Steady-state neuromagnetic responses were identified with spectral analysis at sensor and source levels. Significant sensor responses peaked at 0.54 and 2.17 Hz in both conditions. Sources at 0.54 Hz were reconstructed in supratemporal auditory cortex, left superior temporal gyrus (STG), left middle temporal gyrus, and left inferior frontal gyrus. Sources at 2.17 Hz were reconstructed in supratemporal auditory cortex and STG. Crucially, source strength in the left STG at 0.54 Hz was significantly higher in verbal attention than in nonverbal attention condition. This study demonstrates speech-sensitive responses at primary auditory and speech-related neocortical areas. Critically, it highlights that, during word discrimination, top-down attention modulates activity within the left STG. This area therefore appears to play a crucial role in selective verbal attentional processes for this early step of speech processing.


Assuntos
Atenção/fisiologia , Discriminação Psicológica/fisiologia , Potenciais Evocados/fisiologia , Córtex Pré-Frontal/fisiologia , Percepção da Fala/fisiologia , Lobo Temporal/fisiologia , Adulto , Córtex Auditivo/fisiologia , Potenciais Evocados Auditivos/fisiologia , Feminino , Humanos , Magnetoencefalografia , Masculino , Psicolinguística , Distribuição Aleatória , Adulto Jovem
15.
Hum Brain Mapp ; 41(9): 2431-2446, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32180307

RESUMO

Multi-item working memory (WM) is a complex cognitive function thought to arise from specific frequency band oscillations and their interactions. While some theories and consistent findings have been established, there is still a lot of unclarity about the sources, temporal dynamics, and roles of event-related fields (ERFs) and theta, alpha, and beta oscillations during WM activity. In this study, we performed an extensive whole-brain ERF and time-frequency analysis on n-back magnetoencephalography data from 38 healthy controls. We identified the previously unknown sources of the n-back M300, the right inferior temporal and parahippocampal gyrus and left inferior temporal gyrus, and frontal theta power increase, the orbitofrontal cortex. We shed new light on the role of the precuneus during n-back activity, based on an early ERF and theta power increase, and suggest it to be a crucial link between lower-level and higher-level information processing. In addition, we provide strong evidence for the central role of the hippocampus in multi-item WM behavior through the dynamics of theta and alpha oscillatory changes. Almost simultaneous alpha power decreases observed in the hippocampus and occipital fusiform gyri, regions known to be involved in letter processing, suggest that these regions together enable letter recognition, encoding and storage in WM. In summary, this study offers an extensive investigation into the spatial, temporal, and spectral characteristics of n-back multi-item WM activity.


Assuntos
Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiologia , Magnetoencefalografia/métodos , Memória de Curto Prazo/fisiologia , Desempenho Psicomotor/fisiologia , Análise Espaço-Temporal , Adolescente , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Adulto Jovem
16.
Am J Med Genet A ; 182(11): 2685-2693, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32808436

RESUMO

We report the case of an 11-year-old Syrian girl born to consanguineous parents, who presents an ataxic gait from early childhood. On clinical examination, she presented a severe static - kinetic cerebellar syndrome, walking without support is possible for short distances only. Strikingly, three consecutive MRIs did not show any sign of cerebellar abnormalities, but a brain positron emission tomography (PET) using [18F]-fluorodeoxyglucose (FDG) demonstrated a clear decrease in glucose metabolism in the cerebellum as well as the anterior and medial temporal lobe bilaterally. A clinical exome analysis identified a novel homozygous c.251A > G (p.Asn84Ser) likely pathogenic variant in the carbonic anhydrase 8 (CA8) gene. CA8 mutations cause cerebellar ataxia, mental retardation, and disequilibrium syndrome subtype 3 (CAMRQ3), a rare genetically autosomal recessive disorder, only described in four families, so far with the frequent observation of quadrupedal gait. The proband differed with other reported CA8 mutations by the absence of clear cerebellar signs on brain MRI and the presence of focal seizures. This report expands the clinical spectrum associated with mutations in CA8 and illustrates the possible discrepancy between (mild) neuro-radiological images (MRI) and (severe) clinical phenotype in young individuals. In contrast, the observation of clear cerebellar abnormal metabolic findings suggests that the FDG-PET scan may be used as an early marker for hereditary ataxia.


Assuntos
Biomarcadores Tumorais/genética , Ataxia Cerebelar/patologia , Homozigoto , Deficiência Intelectual/patologia , Mutação , Fenótipo , Ataxia Cerebelar/genética , Criança , Consanguinidade , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Linhagem
17.
J Surg Oncol ; 121(2): 350-356, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31721228

RESUMO

BACKGROUND AND OBJECTIVES: Selection for surgery in patients with colorectal liver metastases (CRLM) remains inaccurate. We evaluated if CRLM baseline metabolic characteristics, assessed by [18]F-fluorodeoxyglucose-positron emission tomography/computed tomography (18 FDG-PET/CT), could predict postoperative outcomes. METHODS: In a retrospective series of patients undergoing surgery for CRLM, we defined two groups: the long-term survival (LTS) and early relapse (ER) groups, where the postoperative recurrence-free survivals were ≥5 years or <1 year, respectively. We analyzed the patients in whom baseline 18 FDG-PET/CT was available. Clinicopathologic parameters, clinical risk score (CRS), and baseline 18 FDG-PET/CT characteristics were compared between LTS and ER groups. A metabolic CRS (mCRS) was implemented, adding one point to the standard five-point CRS when the highest tumor standardized uptake values (SUVmax )/normal liver mean SUV (SUVmean(liver) ) ratios were >4.3, defining low- and high-risk mCRS by scores of 0 to 2 and 3 to 6, respectively. RESULTS: From a series of 450 patients operated for CRLM (mean follow-up of 58 months), we included for analysis 23 and 30 patients in the LTS and ER groups, respectively. Clinicopathologic parameters and CRS were similar in the LTS and ER groups. Median SUVmax /SUVmean(liver) ratios were higher in ER vs LTS patients (4.2 and 2.8, P = .008, respectively). mCRS was increased in ER patients (P = .024); 61% of LTS patients had low-risk mCRS and 73% of the ER patients had high-risk mCRS (P = .023). CONCLUSIONS: 18 FDG-PET/CT characteristics combined with traditional CRS may represent a new tool to improve selection for surgery in patients with CRLM.

18.
Neuroimage ; 200: 221-230, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31238165

RESUMO

The default-mode network (DMN) and its principal core hubs in the posterior midline cortices (PMC), i.e., the precuneus and the posterior cingulate cortex, play a critical role in the human brain structural and functional architecture. Because of their centrality, they are affected by a wide spectrum of brain disorders, e.g., Alzheimer's disease. Non-invasive electrophysiological techniques such as magnetoencephalography (MEG) are crucial to the investigation of the neurophysiology of the DMN and its alteration by brain disorders. However, MEG studies relying on band-limited power envelope correlation diverge in their ability to identify the PMC as a part of the DMN in healthy subjects at rest. Since these works were based on different MEG recording systems and different source reconstruction pipelines, we compared DMN functional connectivity estimated with two distinct MEG systems (Elekta, now MEGIN, and CTF) and two widely used reconstruction algorithms (Minimum Norm Estimation and linearly constrained minimum variance Beamformer). Our results identified the reconstruction method as the critical factor influencing PMC functional connectivity, which was significantly dampened by the Beamformer. On this basis, we recommend that future electrophysiological studies on the DMN should rely on Minimum Norm Estimation (or close variants) rather than on the classical Beamformer. Crucially, based on analytic knowledge about these two reconstruction algorithms, we demonstrated with simulations that this empirical observation could be explained by the existence of a spontaneous linear, approximately zero-lag synchronization structure between areas of the DMN or among multiple sources within the PMC. This finding highlights a novel property of the neural dynamics and functional architecture of a core human brain network at rest.


Assuntos
Conectoma/métodos , Giro do Cíngulo/fisiologia , Magnetoencefalografia/métodos , Rede Nervosa/fisiologia , Lobo Parietal/fisiologia , Adulto , Feminino , Humanos , Magnetoencefalografia/instrumentação , Masculino , Adulto Jovem
19.
Neuroimage ; 199: 313-324, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31170458

RESUMO

The human brain is functionally organized into large-scale neural networks that are dynamically interconnected. Multiple short-lived states of resting-state functional connectivity (rsFC) identified transiently synchronized networks and cross-network integration. However, little is known about the way brain couplings covary as rsFC states wax and wane. In this magnetoencephalography study, we explore the synchronization structure among the spontaneous interactions of well-known resting-state networks (RSNs). To do so, we extracted modes of dynamic coupling that reflect rsFC synchrony and analyzed their spatio-temporal features. These modes identified transient, sporadic rsFC changes characterized by the widespread integration of RSNs across the brain, most prominently in the ß band. This is in line with the metastable rsFC state model of resting-state dynamics, wherein our modes fit as state transition processes. Furthermore, the default-mode network (DMN) stood out as being structured into competitive cross-network couplings with widespread DMN-RSN interactions, especially among the ß-band modes. These results substantiate the theory that the DMN is a core network enabling dynamic global brain integration in the ß band.


Assuntos
Ondas Encefálicas/fisiologia , Conectoma/métodos , Sincronização Cortical/fisiologia , Magnetoencefalografia/métodos , Rede Nervosa/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
20.
Hum Brain Mapp ; 40(16): 4789-4800, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31361073

RESUMO

Multiple sclerosis (MS) is a demyelinating, neuroinflammatory, and -degenerative disease that affects the brain's neurophysiological functioning through brain atrophy, a reduced conduction velocity and decreased connectivity. Currently, little is known on how MS affects the fast temporal dynamics of activation and deactivation of the different large-scale, ongoing brain networks. In this study, we investigated whether these temporal dynamics are affected in MS patients and whether these changes are induced by the pathology or by the use of benzodiazepines (BZDs), an important symptomatic treatment that aims at reducing insomnia, spasticity and anxiety and reinforces the inhibitory effect of GABA. To this aim, we employed a novel method capable of detecting these fast dynamics in 90 MS patients and 46 healthy controls. We demonstrated a less dynamic frontal default mode network in male MS patients and a reduced activation of the same network in female MS patients, regardless of BZD usage. Additionally, BZDs strongly altered the brain's dynamics by increasing the time spent in the deactivating sensorimotor network and the activating occipital network. Furthermore, BZDs induced a decreased power in the theta band and an increased power in the beta band. The latter was strongly expressed in those states without activation of the sensorimotor network. In summary, we demonstrate gender-dependent changes to the brain dynamics in the frontal DMN and strong effects from BZDs. This study is the first to characterise the effect of multiple sclerosis and BZDs in vivo in a spatially, temporally and spectrally defined way.


Assuntos
Encéfalo/patologia , Esclerose Múltipla/patologia , Esclerose Múltipla/terapia , Adulto , Benzodiazepinas/uso terapêutico , Ritmo beta/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Estudos de Coortes , Feminino , Humanos , Hipnóticos e Sedativos/uso terapêutico , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Cadeias de Markov , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/patologia , Caracteres Sexuais , Ritmo Teta/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA