Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 13(7): e0199695, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29995961

RESUMO

In micropaleontological and paleoclimatological studies based on microfossil morphology and geochemistry, assessing the preservation state of fossils is of the highest importance, as diagenetic alteration invalidates textural features and compromises the correct interpretation of stable isotope and trace elemental analysis. In this paper, we present a novel non-invasive and label-free tomographic approach to reconstruct the three-dimensional architecture of microfossils with submicron resolution based on stimulated Raman scattering (SRS). Furthermore, this technique allows deciphering the three-dimensional (3D) distribution of the minerals within these fossils in a chemically sensitive manner. Our method, therefore, allows to identify microfossils, to chemically map their internal structure and eventually to determine their preservation state. We demonstrate the effectiveness of this method by analyzing several benthic and planktonic foraminifera, obtaining full 3D distributions of carbonate, iron oxide and porosity for each specimen. Subsequently, the preservation state of each microfossil can be assessed using these 3D compositional maps. The technique is highly sensitive, non-destructive, time-efficient and avoids the need for sample pretreatment. Therefore, its predestined application is the final check of the state of microfossils before applying subsequent geochemical analyses.


Assuntos
Foraminíferos/química , Fósseis , Microscopia Óptica não Linear/métodos , Paleontologia/métodos , Carbono/análise , Carbonatos/análise , Compostos Férricos/análise
2.
Environ Sci Pollut Res Int ; 22(3): 2205-18, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25172461

RESUMO

This study investigates the solid phase characteristics and release of heavy metals (i.e., Cd, Co, Cu, Cr, Mo, Ni, Pb, and Zn) and arsenic (As) from sludge samples derived from industrial wastewater treatment plants. The emphasis is determining the influence of acidification on element mobilization based on a multidisciplinary approach that combines cascade and pHstat leaching tests with solid phase characterization through X-ray diffraction (XRD), field emission gun electron probe micro analysis (FEG-EPMA), and thermodynamic modeling (Visual MinteQ 3.0). Solid phase characterization and thermodynamic modeling results allow prediction of Ni and Zn leachabilities. FEG-EPMA is useful for direct solid phase characterization because it provides information on additional phases including specific element associations that cannot be detected by XRD analysis. Cascade and pHstat leaching test results indicate that disposal of improperly treated sludges at landfills may lead to extreme environmental risks due to high leachable concentrations of Zn, Ni, Cu, Cr, and Pb. However, high leachabilities under acid conditions of Ni and Zn as observed from pHstat leaching test results may provide a potential opportunity for acid extraction recovery of Ni and Zn from such sludges.


Assuntos
Arsênio/química , Metais Pesados/química , Esgotos/química , Arsênio/análise , Resíduos Industriais/análise , Indústrias , Metais Pesados/análise
3.
J Agric Food Chem ; 63(18): 4673-82, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25891388

RESUMO

In this work, the interactions of a well-studied hydrophobin with different types of nonpolar model substances and their impact on primary gushing is evaluated. The nature, length, and degree of saturation of nonpolar molecules are key parameters defining the gushing ability or inhibition. When mixed with hydrophobins, the nonpolar molecule-hydrophobin assembly acts as a less gushing or no gushing system. This effect can be explained in the framework of a competition effect between non-polar systems and CO2 to interact with the hydrophobic patch of the hydrophobin. Interactions of these molecules with hydrophobins are promoted as a result of the similar size of the nonpolar molecules with the hydrophobic patch of the protein, at the expense of the formation of nanobubbles with CO2. In order to prove the presence of interactions and to unravel the mechanisms behind them, a complete set of experimental techniques was used. Surface sensitive techniques clearly show the presence of the interactions, whose nature is not covalent nor hydrogen bonding according to infrared spectroscopy results. Interactions were also reflected by particle size analysis in which mixtures of particles displayed larger size than their pure component counterparts. Upon mixing with nonpolar molecules, the gushing ability of the protein is significantly disrupted.


Assuntos
Proteínas Fúngicas/química , Trichoderma/química , Fenômenos Biomecânicos , Interações Hidrofóbicas e Hidrofílicas , Conformação Proteica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA