RESUMO
Cancer and neurodegenerative disorders present overwhelming challenges for healthcare worldwide. Epidemiological studies showed a decrease in cancer rates in patients with neurodegenerative disorders, including the Huntington disease (HD). Apoptosis is one of the most important processes for both cancer and neurodegeneration. We suggest that genes closely connected with apoptosis and associated with HD may affect carcinogenesis. We applied reconstruction and analysis of gene networks associated with HD and apoptosis and identified potentially important genes for inverse comorbidity of cancer and HD. The top 10 high-priority candidate genes included APOE, PSEN1, INS, IL6, SQSTM1, SP1, HTT, LEP, HSPA4, and BDNF. Functional analysis of these genes was carried out using gene ontology and KEGG pathways. By exploring genome-wide association study results, we identified genes associated with neurodegenerative and oncological disorders, as well as their endophenotypes and risk factors. We used publicly available datasets of HD and breast and prostate cancers to analyze the expression of the identified genes. Functional modules of these genes were characterized according to disease-specific tissues. This integrative approach revealed that these genes predominantly exert similar functions in different tissues. Apoptosis along with lipid metabolism dysregulation and cell homeostasis maintenance in the response to environmental stimulus and drugs are likely key processes in inverse comorbidity of cancer in patients with HD. Overall, the identified genes represent the promising targets for studying molecular relations of cancer and HD.
Assuntos
Doença de Huntington , Neoplasias , Doenças Neurodegenerativas , Masculino , Humanos , Doença de Huntington/epidemiologia , Doença de Huntington/genética , Doença de Huntington/metabolismo , Estudo de Associação Genômica Ampla , Redes Reguladoras de Genes , Neoplasias/epidemiologia , Neoplasias/genéticaRESUMO
BACKGROUND: Tuberculosis (TB) is one of the most significant health-care problems worldwide. The host's genetics play an important role in the development of TB in humans. The disease progresses through several stages, each of which can be under the control of different genes. The precise genes influencing the different stages of the disease are not yet identified. The aim of the current study was to determine the associations between primary and secondary TB and the polymorphisms of novel candidate genes for TB susceptibility, namely CD79A, HCST, CXCR4, CD4, CD80, CP, PACRG, and CD69. METHODS: A total of 357 patients with TB (130 cases with primary TB and 227 cases with secondary TB) from the Siberian region of Russia as well as 445 healthy controls were studied. The study was performed at the Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia, between July 2015 and November 2016. Genotyping was carried out using MALDI-TOF mass spectrometry and PCR-RFLP. The associations between the single-nucleotide polymorphisms and TB were assessed using logistic regression adjusting for covariates (age and gender). Multiple testing was addressed via the experiment-wise permutation approach. The statistical significance threshold was a P value less than 0.05 for the permutation P values. The analyses were done in R 3.2 statistical software. RESULTS: An association was established between the rs1880661 variant of the CD80 gene and secondary TB and the rs10945890 variant of the PACRG gene and both primary and secondary TB. However, the same allele of PACRG appeared to be both a risk factor for reactivation (secondary TB) and a protector against primary infection. CONCLUSION: The results suggested that the CD80 and PACRG genes were associated with susceptibility to different forms of TB infection in the Russian population.
RESUMO
Comorbidity, a co-incidence of several disorders in an individual, is a common phenomenon. Their development is governed by multiple factors, including genetic variation. The current study was set up to look at associations between isolated and comorbid diseases of bronchial asthma and hypertension, on one hand, and single nucleotide polymorphisms associated with regulation of gene expression (eQTL), on the other hand. A total of 96 eQTL SNPs were genotyped in 587 Russian individuals. Bronchial asthma alone was found to be associated with rs1927914 (TLR4), rs1928298 (intergenic variant), and rs1980616 (SERPINA1); hypertension alone was found to be associated with rs11065987 (intergenic variant); rs2284033 (IL2RB), rs11191582 (NT5C2), and rs11669386 (CARD8); comorbidity between asthma and hypertension was found to be associated with rs1010461 (ANG/RNASE4), rs7038716, rs7026297 (LOC105376244), rs7025144 (intergenic variant), and rs2022318 (intergenic variant). The results suggest that genetic background of comorbidity of asthma and hypertension is different from genetic backgrounds of both diseases manifesting isolated.