Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Small ; 20(30): e2311832, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38386283

RESUMO

The molecular foundations of epidermal cell wall mechanics are critical for understanding structure-function relationships of primary cell walls in plants and facilitating the design of bioinspired materials. To uncover the molecular mechanisms regulating the high extensibility and strength of the cell wall, the onion epidermal wall is stretched uniaxially to various strains and cell wall structures from mesoscale to atomic scale are characterized. Upon longitudinal stretching to high strain, epidermal walls contract in the transverse direction, resulting in a reduced area. Atomic force microscopy shows that cellulose microfibrils exhibit orientation-dependent rearrangements at high strains: longitudinal microfibrils are straightened out and become highly ordered, while transverse microfibrils curve and kink. Small-angle X-ray scattering detects a 7.4 nm spacing aligned along the stretch direction at high strain, which is attributed to distances between individual cellulose microfibrils. Furthermore, wide-angle X-ray scattering reveals a widening of (004) lattice spacing and contraction of (200) lattice spacing in longitudinally aligned cellulose microfibrils at high strain, which implies longitudinal stretching of the cellulose crystal. These findings provide molecular insights into the ability of the wall to bear additional load after yielding: the aggregation of longitudinal microfibrils impedes sliding and enables further stretching of the cellulose to bear increased loads.


Assuntos
Parede Celular , Celulose , Microscopia de Força Atômica , Epiderme Vegetal , Parede Celular/química , Parede Celular/ultraestrutura , Epiderme Vegetal/citologia , Epiderme Vegetal/química , Celulose/química , Microfibrilas/química , Difração de Raios X , Espalhamento a Baixo Ângulo , Cebolas/citologia , Cebolas/química , Estresse Mecânico
2.
Nat Mater ; 22(3): 329-337, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36849816

RESUMO

Stability and current-voltage hysteresis stand as major obstacles to the commercialization of metal halide perovskites. Both phenomena have been associated with ion migration, with anecdotal evidence that stable devices yield low hysteresis. However, the underlying mechanisms of the complex stability-hysteresis link remain elusive. Here we present a multiscale diffusion framework that describes vacancy-mediated halide diffusion in polycrystalline metal halide perovskites, differentiating fast grain boundary diffusivity from volume diffusivity that is two to four orders of magnitude slower. Our results reveal an inverse relationship between the activation energies of grain boundary and volume diffusions, such that stable metal halide perovskites exhibiting smaller volume diffusivities are associated with larger grain boundary diffusivities and reduced hysteresis. The elucidation of multiscale halide diffusion in metal halide perovskites reveals complex inner couplings between ion migration in the volume of grains versus grain boundaries, which in turn can predict the stability and hysteresis of metal halide perovskites, providing a clearer path to addressing the outstanding challenges of the field.

3.
Phys Chem Chem Phys ; 26(21): 15472-15483, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38751347

RESUMO

Conjugated molecules and polymers are being designed as acceptor and donor materials for organic photovoltaic (OPV) cells. OPV performance depends on generation of free charge carriers through dissociation of excitons, which are electron-hole pairs created when a photon is absorbed. Here, we develop a tight-binding model to describe excitons on homo-oligomers, alternating co-oligomers, and a non-fullerene acceptor - IDTBR. We parameterize our model using density functional theory (DFT) energies of neutral, anion, cation, and excited states of constituent moieties. A symmetric molecule like IDTBR has two ends where an exciton can sit; but the product wavefunction approximation for the exciton breaks symmetry. So, we introduce a tight-binding model with full correlation between electron and hole, which allows the exciton to coherently explore both ends of the molecule. Our approach predicts optical singlet excitation energies for oligomers of varying length as well as IDTBR in good agreement with time-dependent DFT and spectroscopic results.

4.
J Am Chem Soc ; 145(42): 23321-23333, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37818621

RESUMO

Partial cation exchange reactions can be used to rationally design and synthesize heterostructured nanoparticles that are useful targets for applications in photocatalysis, nanophotonics, thermoelectrics, and medicine. Such reactions introduce intraparticle frameworks that define the spatial arrangements of different materials within a heterostructured nanoparticle, as well as the orientations and locations of their interfaces. Here, we show that upon heating to temperatures relevant to their synthesis and applications, the ZnS regions and Cu1.8S/ZnS interfaces of heterostructured ZnS-Cu1.8S nanorods migrate and restructure. We first use partial cation exchange reactions to synthesize a library of seven distinct samples containing various patches, bands, and tips of ZnS embedded within Cu1.8S nanorods. Upon annealing in solution or in air, ex situ TEM analysis shows evidence that the ZnS domains migrate in different ways, depending upon their sizes and locations. Using differential scanning calorimetry, we correlate the threshold temperature for ZnS migration to the superionic transition temperature of Cu1.8S, which facilitates rapid diffusion throughout the nanorods. We then use in situ thermal TEM to study the evolution of individual ZnS-Cu1.8S nanorods upon heating. We find that ZnS domain migration occurs through a ripening process that minimizes small patches with higher-energy interfaces in favor of larger bands and tips having lower-energy interfaces, as well as through restructuring of higher-energy Cu1.8S/ZnS interfaces. Notably, Cu1.8S nanorods containing multiple patches of ZnS thermally transform into ZnS-Cu1.8S heterostructured nanorods having ZnS tips and/or central bands, which provides mechanistic insights into how these commonly observed products form during synthesis.

5.
Biomacromolecules ; 23(1): 77-88, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34762396

RESUMO

Oxidation-sensitive drug delivery systems (DDSs) have attracted attention due to the potential to improve efficacy and safety of chemotherapeutics. These systems are designed to release the payload in response to oxidative stress conditions, which are associated with many types of cancer. Despite extensive research on the development of oxidation-sensitive DDS, the lack of selectivity toward cancer cells over healthy cells remains a challenge. Here, we report the design and characterization of polymeric micelles containing thioether groups with varying oxidation sensitivities within the micellar core, which become hydrophilic upon thioether oxidation, leading to destabilization of the micellar structure. We first used the thioether model compounds, 3-methylthiopropylamide (TPAM), thiomorpholine amide (TMAM), and 4-(methylthio)benzylamide (TPhAM) to investigate the effect of the chemical structures of the thioethers on the oxidation by hydrogen peroxide (H2O2). TPAM shows the fastest oxidation, followed by TMAM and TPhAM, showing that the oxidation reaction of thioethers can be modulated by changing the substituent groups bound to the sulfur atom. We next prepared micelles containing these different thioether groups within the core (TP, TM, and TPh micelles). The micelles containing the thioether groups with a higher oxidation sensitivity were destabilized by H2O2 at a lower concentration. Micelle destabilization was also tested in human liver cancer (HepG2) cells and human umbilical vein endothelial cells (HUVECs). The TP micelles having the highest oxidation sensitivity were destabilized in both HepG2 cells and HUVECs, while the TPh micelles, which showed the lowest reactivity toward H2O2, were stable in these cell lines. The TM micelles possessing a moderate oxidation sensitivity were destabilized in HepG2 cells but were stable in HUVECs. Furthermore, the micelles were loaded with doxorubicin (Dox) to evaluate their potential in drug delivery applications. Among the micelles, the TM micelles loaded with Dox showed the enhanced relative toxicity in HepG2 cells over HUVECs. Therefore, our approach to fine-tune the oxidation sensitivity of the micelles has potential for improving therapeutic efficacy and safety of drugs in cancer treatment.


Assuntos
Peróxido de Hidrogênio , Micelas , Sobrevivência Celular , Doxorrubicina/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Células Endoteliais/metabolismo , Humanos , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Sulfetos/farmacologia
6.
Phys Chem Chem Phys ; 24(7): 4125-4130, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35113112

RESUMO

Advancing the atomistic level understanding of aqueous dissolution of multicomponent materials is essential. We combined ReaxFF and experiments to investigate the dissolution at the Li1+xAlxTi2-x(PO4)3-water interface. We demonstrate that surface dissolution is a sequentially dynamic process. The phosphate dissolution destabilizes the NASICON structure, which triggers a titanium-rich secondary phase formation.

7.
Nat Mater ; 19(3): 347-354, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31988513

RESUMO

Biological membranes are ideal for separations as they provide high permeability while maintaining high solute selectivity due to the presence of specialized membrane protein (MP) channels. However, successful integration of MPs into manufactured membranes has remained a significant challenge. Here, we demonstrate a two-hour organic solvent method to develop 2D crystals and nanosheets of highly packed pore-forming MPs in block copolymers (BCPs). We then integrate these hybrid materials into scalable MP-BCP biomimetic membranes. These MP-BCP nanosheet membranes maintain the molecular selectivity of the three types of ß-barrel MP channels used, with pore sizes of 0.8 nm, 1.3 nm, and 1.5 nm. These biomimetic membranes demonstrate water permeability that is 20-1,000 times greater than that of commercial membranes and 1.5-45 times greater than that of the latest research membranes with comparable molecular exclusion ratings. This approach could provide high performance alternatives in the challenging sub-nanometre to few-nanometre size range.


Assuntos
Proteínas de Membrana/química , Membranas Artificiais , Nanoestruturas/química , Modelos Moleculares , Permeabilidade , Porosidade , Conformação Proteica em Folha beta , Solventes/química , Fatores de Tempo
8.
Arch Biochem Biophys ; 712: 109051, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34610337

RESUMO

Nanodiscs, which are disc-shaped entities that contain a central lipid bilayer encased by an annulus of amphipathic helices, have emerged as a leading native-like membrane mimic. The current approach for the formation of nanodiscs involves the creation of a mixed-micellar solution containing membrane scaffold protein, lipid, and detergent followed by a time consuming process (3-12 h) of dialysis and/or incubation with sorptive beads to remove the detergent molecules from the sample. In contrast, the methodology described herein provides a facile and rapid procedure for the preparation of nanodiscs in a matter of minutes (<15 min) using Sephadex® G-25 resin to remove the detergent from the sample. A panoply of biophysical techniques including analytical ultracentrifugation, dynamic light scattering, gel filtration chromatography, circular dichroism spectroscopy, and cryogenic electron microscopy were employed to unequivocally confirm that aggregates formed by this method are indeed nanodiscs. We believe that this method will be attractive for time-sensitive and high-throughput experiments.


Assuntos
Bicamadas Lipídicas/química , Proteínas de Membrana/química , Nanoestruturas/química , Biofísica , Dimiristoilfosfatidilcolina/química , Peso Molecular , Tamanho da Partícula , Conformação Proteica em alfa-Hélice
9.
Proc Natl Acad Sci U S A ; 115(35): 8694-8699, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30104388

RESUMO

As water availability becomes a growing challenge in various regions throughout the world, desalination and wastewater reclamation through technologies such as reverse osmosis (RO) are becoming more important. Nevertheless, many open questions remain regarding the internal structure of thin-film composite RO membranes. In this work, fully aromatic polyamide films that serve as the active layer of state-of-the-art water filtration membranes were investigated using high-angle annular dark-field scanning transmission electron microscopy tomography. Reconstructions of the 3D morphology reveal intricate aspects of the complex microstructure not visible from 2D projections. We find that internal voids of the active layer of compressed commercial membranes account for less than 0.2% of the total polymer volume, contrary to previously reported values that are two orders of magnitude higher. Measurements of the local variation in polyamide density from electron tomography reveal that the polymer density is highest at the permeable surface for the two membranes tested and establish the significance of surface area on RO membrane transport properties. The same type of analyses could provide explanations for different flux variations with surface area for other types of membranes where the density is distributed differently. Thus, 3D reconstructions and quantitative analyses will be crucial to characterize the complex morphology of polymeric membranes used in next-generation water-purification membranes.

10.
Soft Matter ; 16(42): 9769-9779, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33000857

RESUMO

Understanding and manipulating the miscibility of donor and acceptor components in the active layer morphology is important to optimize the longevity of organic photovoltaic devices and control power conversion efficiency. In pursuit of this goal, a "porphyrin-capped" poly(3-hexylthiophene) was synthesized to take advantage of strong porphyrin:fullerene intermolecular interactions that modify fullerene miscibility in the active layer. End-functionalized poly(3-hexylthiophene) was synthesized via catalyst transfer polymerization and subsequently functionalized with a porphyrin moiety via post-polymerization modification. UV-vis spectroscopy and X-ray diffraction measurements show that the porphyrin-functionalized poly(3-hexylthiophene) exhibits increased intermolecular interactions with phenyl-C61-butyric acid methyl ester (PCBM) in the solid state compared to unfunctionalized poly(3-hexylthiophene) without sacrificing microstructure ordering that facilitates optimal charge transport properties. Additionally, differential scanning calorimetry revealed porphyrin-functionalized poly(3-hexylthiophene) crystallization decreased only slightly (1-6%) compared to unfunctionalized poly(3-hexylthiophenes) while increasing fullerene miscibility by 55%. Preliminary organic photovoltaic device results indicate device power conversion efficiency is sensitive to additive loading levels, as evident by a slight increase in power conversion efficiency at low additive loading levels but a continuous decrease with increased loading levels. While the increased fullerene miscibility is not balanced with significant increases in power conversion efficiency, this approach suggests that integrating non-bonded interaction potentials is a useful pathway for manipulating the morphology of the bulk heterojunction thin film, and porphyrin-functionalized poly(3-hexylthiophenes) may be useful additives in that regard.

11.
Molecules ; 25(24)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33316935

RESUMO

Textiles functionalized with cupric oxide (CuO) nanoparticles have become a promising option to prevent the spread of diseases due to their antimicrobial properties, which strongly depend on the structure and morphology of the nanoparticles and the method used for the functionalization process. This article presents a review of work focused on textiles functionalized with CuO nanoparticles, which were classified into two groups, namely, in situ and ex situ. Moreover, the analyzed bacterial strains, the resistance of the antimicrobial properties of textiles to washing processes, and their cytotoxicity were identified. Finally, the possible antimicrobial mechanisms that could develop in Gram-positive and Gram-negative bacteria were described.


Assuntos
Antibacterianos/química , Cobre/química , Fibra de Algodão/microbiologia , Nanopartículas Metálicas/química , Antibacterianos/administração & dosagem , Antibacterianos/toxicidade , Cobre/administração & dosagem , Cobre/toxicidade , Fibra de Algodão/toxicidade , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Técnicas In Vitro , Lavanderia , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Nanotecnologia
12.
Macromol Rapid Commun ; 40(15): e1900134, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31116905

RESUMO

All conjugated polymers examined to date exhibit significant cumulative lattice disorder, although the origin of this disorder remains unclear. Using atomistic molecular dynamics (MD) simulations, the detailed structures for single crystals of a commonly studied conjugated polymer, poly(3-hexylthiophene-2,5-diyl) (P3HT) are obtained. It is shown that thermal fluctuations of thiophene rings lead to cumulative disorder of the lattice with an effective paracrystallinity of about 0.05 in the π-π stacking direction. The thermal-fluctuation-induced lattice disorder can in turn limit the apparent coherence length that can be observed in diffraction experiments. Calculating mobilities from simulated crystal structures demonstrates that thermal-fluctuation-induced lattice disorder even enhances charge transport in P3HT. The mean inter-chain charge transfer integral is enhanced with increasing cumulative lattice disorder, which in turn leads to pathways for fast charge transport through crystals.


Assuntos
Simulação de Dinâmica Molecular , Polímeros/química , Temperatura , Tiofenos/química
13.
Faraday Discuss ; 209(0): 179-191, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29972389

RESUMO

The long-standing goal in membrane development is creating materials with superior transport properties, including both high flux and high selectivity. These properties are common in biological membranes, and thus mimicking nature is a promising strategy towards improved membrane design. In previous studies, we have shown that artificial water channels can have excellent water transport abilities that are comparable to biological water channel proteins, aquaporins. In this study, we propose a strategy for incorporation of artificial channels that mimic biological channels into stable polymeric membranes. Specifically, we synthesized an amphiphilic triblock copolymer, poly(isoprene)-block-poly(ethylene oxide)-block-poly(isoprene), which is a high molecular weight synthetic analog of naturally occurring lipids in terms of its self-assembled structure. This polymer was used to build stacked membranes composed of self-assembled lamellae. The resulting membranes resemble layers of natural lipid bilayers in living systems, but with superior mechanical properties suitable for real-world applications. The procedures used to synthesize the triblock copolymer resulted in membranes with increased stability due to the crosslinkability of the hydrophobic domains. Furthermore, the introduction of bridging hydrophilic domains leads to the preservation of the stacked membrane structure when the membrane is in contact with water, something that is challenging for diblock lamellae that tend to swell, and delaminate in aqueous solutions. This new method of membrane fabrication offers a practical model for making channel-based biomimetic membranes, which may lead to technological applications in reverse osmosis, nanofiltration, and ultrafiltration membranes.


Assuntos
Materiais Biomiméticos/química , Reagentes de Ligações Cruzadas/química , Bicamadas Lipídicas/química , Polímeros/química , Reagentes de Ligações Cruzadas/síntese química , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/síntese química , Estrutura Molecular , Tamanho da Partícula , Polímeros/síntese química , Propriedades de Superfície
14.
Phys Chem Chem Phys ; 20(34): 22134-22147, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30116814

RESUMO

We developed a ReaxFF reactive force field for NASICON-type Li1+xAlxTi2-x(PO4)3 (LATP) materials, which is a promising solid-electrolyte that may enable all-solid-state lithium-ion batteries. The force field parameters were optimized based on density functional theory (DFT) data, including equations of state and the heats of formation of ternary metal oxides and metal phosphate crystal phases (e.g., LixTiO2, Al2TiO5, LiAlO2, AlPO4, Li3PO4 and LiTi2(PO4)3 (LTP)), and the energy barriers for Li diffusion in TiO2 and LTP via vacancies and interstitial sites. Using ReaxFF, the structural and the energetic features of LATP were described properly across various compositions - Li occupies more preferentially the interstitial site next to Al than next to Ti. Also, as observed in experimental data, the lattice parameters decrease when Ti is partly substituted by Al because of the smaller size of the Al cation. Using this force field, the diffusion mechanism and the ionic conductivity of Li in LTP and LATP were investigated at T = 300-1100 K. Low ionic conductivity (5.9 × 10-5 S cm-1 at 300 K) was obtained in LTP as previously reported. In LATP at x = 0.2, the ionic conductivity was slightly improved (8.4 × 10-5 S cm-1), but it is still below the experimental value, which is on the order of 10-4 to 10-3 S cm-1 at x = 0.3-0.5. At higher x (higher Al composition), LATP has a configurational diversity due to the Al substitution and the concomitant insertion of Li. By performing a hybrid MC/MD simulation for LATP at x = 0.5, a thermodynamically stable LATP configuration was obtained. The ionic conductivity of this LATP configuration was calculated to be 7.4 × 10-4 S cm-1 at 300 K, which is one order of magnitude higher than the ionic conductivity for LTP and LATP at x = 0.2. This value is in good agreement with our experimental value (2.5 × 10-4 S cm-1 at 300 K) and the literature values. The composition-dependent ionic conductivity of LATP was successfully demonstrated using the ReaxFF reactive force field, verifying the applicability of the LATP force field for the understanding of Li diffusion and the design of highly Li ion conductive solid electrolytes. Furthermore, our results also demonstrate the feasibility of the MC/MD method in modeling LATP configuration, and provide compelling evidence for the solid solution sensitivity on ionic conductivity.

15.
Phys Rev Lett ; 119(1): 017801, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28731776

RESUMO

We introduce a method, based on a novel thermodynamic integration scheme, to extract the Flory-Huggins χ parameter as small as 10^{-3}kT for polymer blends from molecular dynamics (MD) simulations. We obtain χ for the archetypical coarse-grained model of nonpolar polymer blends: flexible bead-spring chains with different Lennard-Jones interactions between A and B monomers. Using these χ values and a lattice version of self-consistent field theory (SCFT), we predict the shape of planar interfaces for phase-separated binary blends. Our SCFT results agree with MD simulations, validating both the predicted χ values and our thermodynamic integration method. Combined with atomistic simulations, our method can be applied to predict χ for new polymers from their chemical structures.

17.
Soft Matter ; 13(1): 49-67, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27506183

RESUMO

Conjugated polymers may play an important role in various emerging optoelectronic applications because they combine the chemical versatility of organic molecules and the flexibility, stretchability and toughness of polymers with semiconducting properties. Nevertheless, in order to achieve the full potential of conjugated polymers, a clear description of how their structure, morphology, and macroscopic properties are interrelated is needed. We propose that the starting point for understanding conjugated polymers includes understanding chain conformations and phase behavior. Efforts to predict and measure the persistence length have significantly refined our intuition of the chain stiffness, and have led to predictions of nematic-to-isotropic transitions. Exploring mixing between conjugated polymers and small molecules or other polymers has demonstrated tremendous advancements in attaining the needed properties for various optoelectronic devices. Current efforts continue to refine our knowledge of chain conformations and phase behavior and the factors that influence these properties, thereby providing opportunities for the development of novel optoelectronic materials based on conjugated polymers.

18.
Soft Matter ; 12(28): 6141-7, 2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27345760

RESUMO

Semiflexible polymers undergo a weakly first order isotropic-to-nematic (IN) phase transition when the volume fraction ϕ is high enough that random alignment of the backbone segments is no longer viable. For semiflexible chains, the critical volume fraction ϕc is governed by the backbone stiffness Np. To locate the IN phase transition, we perform molecular dynamics (MD) simulations of bead-spring chains confined between two impenetrable parallel surfaces. We use the impenetrable surfaces to induce nematic-isotropic interfaces for semiflexible chains in the isotropic phase. By progressively increasing the backbone stiffness Np, we observe the propagation of surface-induced nematic order above a critical stiffness N for a given ϕ. Using the simulation results N(ϕ), we construct the IN phase boundry in the ϕ-Np plane, from which the scaling relation between ϕc and Np is obtained. For semiflexible chains with Np ≤ 5.78, our results suggest ϕc ∼ Np(-1), consistent with prediction by Khokhlov and Semenov. For chains with Np ≥ 5.78, we observe a new scaling regime in which ϕc ∼ Np(-2/3).

19.
Nano Lett ; 13(6): 2957-63, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23687903

RESUMO

Organic electronic materials have the potential to impact almost every aspect of modern life including how we access information, light our homes, and power personal electronics. Nevertheless, weak intermolecular interactions and disorder at junctions of different organic materials limit the performance and stability of organic interfaces and hence the applicability of organic semiconductors to electronic devices. Here, we demonstrate control of donor-acceptor heterojunctions through microphase-separated conjugated block copolymers. When utilized as the active layer of photovoltaic cells, block copolymer-based devices demonstrate efficient photoconversion well beyond devices composed of homopolymer blends. The 3% block copolymer device efficiencies are achieved without the use of a fullerene acceptor. X-ray scattering results reveal that the remarkable performance of block copolymer solar cells is due to self-assembly into mesoscale lamellar morphologies with primarily face-on crystallite orientations. Conjugated block copolymers thus provide a pathway to enhance performance in excitonic solar cells through control of donor-acceptor interfaces.

20.
J Chem Theory Comput ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39067065

RESUMO

In an organic solar cell, exciton dissociation and charge transport to generate current depend on interface and bulk morphology, respectively, and their rates dictate device performance. Blend miscibility and processing determine the final morphology. We investigate the blend miscibility of P3HT and O-IDTBR, employing our recently developed "push-pull" computational technique, and explore its effect on nanoscale morphology. The resulting Flory-Huggins χ parameter is primarily enthalpic, and the blend exhibits UCST behavior. To directly simulate an equilibrated morphology in such a blend requires large (30 nm) systems and long (10 µs) simulations, which we attain with our virtual site coarse graining technique. In the resulting amorphous phase-separated state, O-IDTBR swells P3HT by about 15%, but does not percolate within the P3HT-rich phase. The interfacial profile depends on crystallinity: the amorphous interface is several nanometers wide, whereas an acceptor crystal induces order in the adjacent donor polymer, forming a sharp interface quite similar to a crystal-crystal interface. The wide amorphous interface promotes more donor-acceptor contacts with a wide range of relative orientations; however, the acceptors do not form a percolating network, which will likely lead to charge recombination. A crystal interface exhibits fewer donor-acceptor contacts with primarily face-on orientation that are more likely to charge-separate because of instant access to the preferred domain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA