Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Biol Sci ; 289(1976): 20220535, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35703051

RESUMO

Understanding how animals move in dense environments where vision is compromised is a major challenge. We used GPS and dead-reckoning to examine the movement of Magellanic penguins commuting through vegetation that precluded long-distance vision. Birds leaving the nest followed the shortest, quickest route to the sea (the 'ideal path', or 'I-path') but return tracks depended where the birds left the water. Penguins arriving at the beach departure spot mirrored the departure. Most of those landing at a distance from the departure spot travelled slowly, obliquely to the coast at a more acute angle than a beeline trajectory to the nest. On crossing their I-path, these birds then followed this route quickly to their nests. This movement strategy saves birds distance, time and energy compared to a route along the beach and the into the colony on the I-track and saves time and energy compared to a beeline trajectory which necessitates slow travel in unfamiliar areas. This suggests that some animals adopt tactics that take them to an area where their navigational capacities are enhanced for efficient travel in challenging environments.


Assuntos
Doenças das Aves , Spheniscidae , Animais
2.
J Anim Ecol ; 89(1): 186-206, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31424571

RESUMO

The paradigm-changing opportunities of biologging sensors for ecological research, especially movement ecology, are vast, but the crucial questions of how best to match the most appropriate sensors and sensor combinations to specific biological questions and how to analyse complex biologging data, are mostly ignored. Here, we fill this gap by reviewing how to optimize the use of biologging techniques to answer questions in movement ecology and synthesize this into an Integrated Biologging Framework (IBF). We highlight that multisensor approaches are a new frontier in biologging, while identifying current limitations and avenues for future development in sensor technology. We focus on the importance of efficient data exploration, and more advanced multidimensional visualization methods, combined with appropriate archiving and sharing approaches, to tackle the big data issues presented by biologging. We also discuss the challenges and opportunities in matching the peculiarities of specific sensor data to the statistical models used, highlighting at the same time the large advances which will be required in the latter to properly analyse biologging data. Taking advantage of the biologging revolution will require a large improvement in the theoretical and mathematical foundations of movement ecology, to include the rich set of high-frequency multivariate data, which greatly expand the fundamentally limited and coarse data that could be collected using location-only technology such as GPS. Equally important will be the establishment of multidisciplinary collaborations to catalyse the opportunities offered by current and future biologging technology. If this is achieved, clear potential exists for developing a vastly improved mechanistic understanding of animal movements and their roles in ecological processes and for building realistic predictive models.


Assuntos
Ecologia , Movimento , Animais
3.
J Anim Ecol ; 89(1): 161-172, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31173339

RESUMO

It is fundamentally important for many animal ecologists to quantify the costs of animal activities, although it is not straightforward to do so. The recording of triaxial acceleration by animal-attached devices has been proposed as a way forward for this, with the specific suggestion that dynamic body acceleration (DBA) be used as a proxy for movement-based power. Dynamic body acceleration has now been validated frequently, both in the laboratory and in the field, although the literature still shows that some aspects of DBA theory and practice are misunderstood. Here, we examine the theory behind DBA and employ modelling approaches to assess factors that affect the link between DBA and energy expenditure, from the deployment of the tag, through to the calibration of DBA with energy use in laboratory and field settings. Using data from a range of species and movement modes, we illustrate that vectorial and additive DBA metrics are proportional to each other. Either can be used as a proxy for energy and summed to estimate total energy expended over a given period, or divided by time to give a proxy for movement-related metabolic power. Nonetheless, we highlight how the ability of DBA to predict metabolic rate declines as the contribution of non-movement-related factors, such as heat production, increases. Overall, DBA seems to be a substantive proxy for movement-based power but consideration of other movement-related metrics, such as the static body acceleration and the rate of change of body pitch and roll, may enable researchers to refine movement-based metabolic costs, particularly in animals where movement is not characterized by marked changes in body acceleration.


Assuntos
Aceleração , Metabolismo Energético , Animais , Movimento
4.
Proc Biol Sci ; 284(1867)2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29142117

RESUMO

Highly specialized diving birds display substantial dichotomy in neck length with, for example, cormorants and anhingas having extreme necks, while penguins and auks have minimized necks. We attached acceleration loggers to Imperial cormorants Phalacrocorax atriceps and Magellanic penguins Spheniscus magellanicus, both foraging in waters over the Patagonian Shelf, to examine the difference in movement between their respective heads and bodies in an attempt to explain this dichotomy. The penguins had head and body attitudes and movements that broadly concurred throughout all phases of their dives. By contrast, although the cormorants followed this pattern during the descent and ascent phases of dives, during the bottom (foraging) phase of the dive, the head angle differed widely from that of the body and its dynamism (measured using vectorial dynamic acceleration) was over four times greater. A simple model indicated that having the head on an extended neck would allow these cormorants to half the energy expenditure that they would expend if their body moved in the way their heads did. This apparently energy-saving solution is likely to lead to greater heat loss though and would seem tenable in slow-swimming species because the loss of streamlining that it engenders would make it detrimental for fast-swimming taxa such as penguins.


Assuntos
Aves/anatomia & histologia , Aves/fisiologia , Metabolismo Energético , Comportamento Alimentar , Natação , Aceleração , Acelerometria , Animais , Organismos Aquáticos/fisiologia , Mergulho , Modelos Biológicos , Spheniscidae/anatomia & histologia , Spheniscidae/fisiologia
5.
J R Soc Interface ; 19(193): 20220168, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36000229

RESUMO

Body-mounted accelerometers provide a new prospect for estimating power use in flying birds, as the signal varies with the two major kinematic determinants of aerodynamic power: wingbeat frequency and amplitude. Yet wingbeat frequency is sometimes used as a proxy for power output in isolation. There is, therefore, a need to understand which kinematic parameter birds vary and whether this is predicted by flight mode (e.g. accelerating, ascending/descending flight), speed or morphology. We investigate this using high-frequency acceleration data from (i) 14 species flying in the wild, (ii) two species flying in controlled conditions in a wind tunnel and (iii) a review of experimental and field studies. While wingbeat frequency and amplitude were positively correlated, R2 values were generally low, supporting the idea that parameters can vary independently. Indeed, birds were more likely to modulate wingbeat amplitude for more energy-demanding flight modes, including climbing and take-off. Nonetheless, the striking variability, even within species and flight types, highlights the complexity of describing the kinematic relationships, which appear sensitive to both the biological and physical context. Notwithstanding this, acceleration metrics that incorporate both kinematic parameters should be more robust proxies for power than wingbeat frequency alone.


Assuntos
Voo Animal , Asas de Animais , Animais , Fenômenos Biomecânicos , Aves
6.
Anim Biotelemetry ; 9: 43, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34900262

RESUMO

BACKGROUND: Understanding what animals do in time and space is important for a range of ecological questions, however accurate estimates of how animals use space is challenging. Within the use of animal-attached tags, radio telemetry (including the Global Positioning System, 'GPS') is typically used to verify an animal's location periodically. Straight lines are typically drawn between these 'Verified Positions' ('VPs') so the interpolation of space-use is limited by the temporal and spatial resolution of the system's measurement. As such, parameters such as route-taken and distance travelled can be poorly represented when using VP systems alone. Dead-reckoning has been suggested as a technique to improve the accuracy and resolution of reconstructed movement paths, whilst maximising battery life of VP systems. This typically involves deriving travel vectors from motion sensor systems and periodically correcting path dimensions for drift with simultaneously deployed VP systems. How often paths should be corrected for drift, however, has remained unclear. METHODS AND RESULTS: Here, we review the utility of dead-reckoning across four contrasting model species using different forms of locomotion (the African lion Panthera leo, the red-tailed tropicbird Phaethon rubricauda, the Magellanic penguin Spheniscus magellanicus, and the imperial cormorant Leucocarbo atriceps). Simulations were performed to examine the extent of dead-reckoning error, relative to VPs, as a function of Verified Position correction (VP correction) rate and the effect of this on estimates of distance moved. Dead-reckoning error was greatest for animals travelling within air and water. We demonstrate how sources of measurement error can arise within VP-corrected dead-reckoned tracks and propose advancements to this procedure to maximise dead-reckoning accuracy. CONCLUSIONS: We review the utility of VP-corrected dead-reckoning according to movement type and consider a range of ecological questions that would benefit from dead-reckoning, primarily concerning animal-barrier interactions and foraging strategies.

7.
Mov Ecol ; 4: 22, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27688882

RESUMO

BACKGROUND: We are increasingly using recording devices with multiple sensors operating at high frequencies to produce large volumes of data which are problematic to interpret. A particularly challenging example comes from studies on animals and humans where researchers use animal-attached accelerometers on moving subjects to attempt to quantify behaviour, energy expenditure and condition. RESULTS: The approach taken effectively concatinated three complex lines of acceleration into one visualization that highlighted patterns that were otherwise not obvious. The summation of data points within sphere facets and presentation into histograms on the sphere surface effectively dealt with data occlusion. Further frequency binning of data within facets and representation of these bins as discs on spines radiating from the sphere allowed patterns in dynamic body accelerations (DBA) associated with different postures to become obvious. METHOD: We examine the extent to which novel, gravity-based spherical plots can produce revealing visualizations to incorporate the complexity of such multidimensional acceleration data using a suite of different acceleration-derived metrics with a view to highlighting patterns that are not obvious using current approaches. The basis for the visualisation involved three-dimensional plots of the smoothed acceleration values, which then occupied points on the surface of a sphere. This sphere was divided into facets and point density within each facet expressed as a histogram. Within each facet-dependent histogram, data were also grouped into frequency bins of any desirable parameters, most particularly dynamic body acceleration (DBA), which were then presented as discs on a central spine radiating from the facet. Greater radial distances from the sphere surface indicated greater DBA values while greater disc diameter indicated larger numbers of data points with that particular value. CONCLUSIONS: We indicate how this approach links behaviour and proxies for energetics and can inform our identification and understanding of movement-related processes, highlighting subtle differences in movement and its associated energetics. This approach has ramifications that should expand to areas as disparate as disease identification, lifestyle, sports practice and wild animal ecology. UCT Science Faculty Animal Ethics 2014/V10/PR (valid until 2017).

8.
PLoS One ; 10(9): e0136980, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26367384

RESUMO

During the last few years, the development of animal-borne still cameras and video recorders has enabled researchers to observe what a wild animal sees in the field. In the present study, we deployed miniaturized video recorders to investigate the underwater foraging behavior of Imperial cormorants (Phalacrocorax atriceps). Video footage was obtained from 12 animals and 49 dives comprising a total of 8.1 h of foraging data. Video information revealed that Imperial cormorants are almost exclusively benthic feeders. While foraging along the seafloor, animals did not necessarily keep their body horizontal but inclined it downwards. The head of the instrumented animal was always visible in the videos and in the majority of the dives it was moved constantly forward and backward by extending and contracting the neck while travelling on the seafloor. Animals detected prey at very short distances, performed quick capture attempts and spent the majority of their time on the seafloor searching for prey. Cormorants foraged at three different sea bottom habitats and the way in which they searched for food differed between habitats. Dives were frequently performed under low luminosity levels suggesting that cormorants would locate prey with other sensory systems in addition to sight. Our video data support the idea that Imperial cormorants' efficient hunting involves the use of specialized foraging techniques to compensate for their poor underwater vision.


Assuntos
Aves/fisiologia , Comportamento Alimentar , Animais , Oceanos e Mares , Tecnologia de Sensoriamento Remoto
9.
PeerJ ; 3: e957, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26082869

RESUMO

Colonial pinnipeds may be subject to substantial consumptive competition because they are large, slow-moving central place foragers. We examined possible mechanisms for reducing this competition by examining the diving behaviour of harbour seals (Phoca vitulina) after equipping 34 seals (11 females, 23 males) foraging from three locations; Rømø, Denmark and Lorenzenplate and Helgoland, Germany, in the Wadden Sea area with time-depth recorders. Analysis of 319,021 dives revealed little between-colony variation but appreciable inter-sex differences, with males diving deeper than females, but for shorter periods. Males also had higher vertical descent rates. This result suggests that males may have higher overall swim speeds, which would increase higher oxygen consumption, and may explain the shorter dive durations compared to females. Intersex variation in swim speed alone is predicted to lead to fundamental differences in the time use of three-dimensional space, which may help reduce consumptive competition in harbour seals and other colonial pinnipeds.

10.
PLoS One ; 9(2): e88609, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586354

RESUMO

Researchers hoping to elucidate the behaviour of species that aren't readily observed are able to do so using biotelemetry methods. Accelerometers in particular are proving particularly effective and have been used on terrestrial, aquatic and volant species with success. In the past, behavioural modes were detected in accelerometer data through manual inspection, but with developments in technology, modern accelerometers now record at frequencies that make this impractical. In light of this, some researchers have suggested the use of various machine learning approaches as a means to classify accelerometer data automatically. We feel uptake of this approach by the scientific community is inhibited for two reasons; 1) Most machine learning algorithms require selection of summary statistics which obscure the decision mechanisms by which classifications are arrived, and 2) they are difficult to implement without appreciable computational skill. We present a method which allows researchers to classify accelerometer data into behavioural classes automatically using a primitive machine learning algorithm, k-nearest neighbour (KNN). Raw acceleration data may be used in KNN without selection of summary statistics, and it is easily implemented using the freeware program R. The method is evaluated by detecting 5 behavioural modes in 8 species, with examples of quadrupedal, bipedal and volant species. Accuracy and Precision were found to be comparable with other, more complex methods. In order to assist in the application of this method, the script required to run KNN analysis in R is provided. We envisage that the KNN method may be coupled with methods for investigating animal position, such as GPS telemetry or dead-reckoning, in order to implement an integrated approach to movement ecology research.


Assuntos
Acelerometria/métodos , Algoritmos , Comportamento Animal/fisiologia , Atividade Motora/fisiologia , Telemetria/métodos , Acelerometria/instrumentação , Animais , Classificação/métodos , Especificidade da Espécie , Telemetria/instrumentação
11.
Zoology (Jena) ; 115(1): 58-64, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22244455

RESUMO

Numerous methods are currently available to track animal movements. However, only one of these, dead-reckoning, has the capacity to provide continuous data for animal movements over fine scales. Dead-reckoning has been applied almost exclusively in the study of marine species, in part due to the difficulty of accurately measuring the speed of terrestrial species. In the present study we evaluate the use of accelerometers and a metric known as overall dynamic body acceleration (ODBA) as a proxy for the measurement of speed for use in dead-reckoning. Data were collated from previous studies, for 10 species locomoting on a treadmill and their ODBA measured by an attached data logger. All species except one showed a highly significant linear relationship between speed and ODBA; however, there was appreciable inter- and intra-specific variance in this relationship. ODBA was then used to estimate speed in a simple trial run of a dead-reckoning track. Estimating distance travelled using speed derived from prior calibration for ODBA resulted in appreciable errors. We describe a method by which these errors can be minimised, by periodic ground-truthing (e.g., by GPS or VHF telemetry) of the dead-reckoned track and adjusting the relationship between speed and ODBA until actual known positions and dead-reckoned positions accord.


Assuntos
Aceleração , Ecologia/métodos , Atividade Motora/fisiologia , Telemetria/métodos , Animais , Calibragem , Ecologia/instrumentação , Ecologia/tendências , Sistemas de Informação Geográfica , Humanos , Análise de Regressão , Telemetria/instrumentação , Telemetria/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA