Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36015458

RESUMO

Plant Glycoside Hydrolase Family 32 (PGHF32) contains the fructosyltransferases and fructan exohydrolase enzymes responsible for fructan metabolism, in addition to closely related vacuolar and cell wall acid invertases. Agave species produce complex and dynamic fructan molecules (agavins) requiring 4 different fructosyltransferase activities (1-SST, 1-FFT, 6G-FFT and 6-SFT) for their synthesis. Combined analysis of RNAseq and genome data for A. tequilana led to the characterization of the genes encoding 3 fructosyltransferases for this species and support the hypothesis that no separate 6-SFT type enzyme exists in A. tequilana, suggesting that at least one of the fructosyltransferases identified may have multiple enzymatic activities. Structures for PGHF32 genes varied for A. tequilana and between other plant species but were conserved for different enzyme types within a species. The observed patterns are consistent with the formation of distinct gene structures by intron loss. Promoter analysis of the PGHF32 genes identified abundant putative regulatory motifs for light regulation and tissue-specific expression, and these regulatory mechanisms were confirmed experimentally for leaf tissue. Motifs for phytohormone response, carbohydrate metabolism and dehydration responses were also uncovered. Based on the regulatory motifs, full-length cDNAs for MYB, GATA, DOF and GBF transcription factors were identified and their phylogenetic distribution determined by comparison with other plant species. In silico expression analysis for the selected transcription factors revealed both tissue-specific and developmental patterns of expression, allowing candidates to be identified for detailed analysis of the regulation of fructan metabolism in A. tequilana at the molecular level.

2.
Front Plant Sci ; 11: 608850, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552101

RESUMO

Methodology combining mass spectrometry imaging (MSI) with ion mobility separation (IMS) has emerged as a biological imaging technique due to its versatility, sensitivity and label-free approach. This technique has been shown to separate isomeric compounds such as lipids, amino acids, carboxylic acids and carbohydrates. This report describes mass spectrometry imaging in combination with traveling-wave ion mobility separation and matrix-assisted laser desorption/ionization (MALDI). Positive ionization mode was used to locate fructans on tissue printed sections of Agave rhizome and stem tissue and distinguished fructan isoforms. Here we show the location of fructans ranging from DP3 to DP17 to be differentially abundant across the stem tissue and for the first time, experimental collision cross sections of endogenous fructan structures have been collected, revealing at least two isoforms for fructans of DP4, DP5, DP6, DP7, DP8, DP10, and DP11. This demonstrates that complex fructans such as agavins can be located and their isoforms resolved using a combination of MALDI, IMS, and MSI, without the need for extraction or derivatization. Use of this methodology uncovered patterns of fructan localization consistent with functional differences where higher DP fructans are found toward the central section of the stem supporting a role in long term carbohydrate storage whereas lower DP fructans are concentrated in the highly vascularized central core of rhizomes supporting a role in mobilization of carbohydrates from the mother plant to developing offsets. Tissue specific patterns of expression of genes encoding enzymes involved in fructan metabolism are consistent with fructan structures and localization.

3.
Front Plant Sci ; 6: 594, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26300895

RESUMO

In order to optimize the use of agaves for commercial applications, an understanding of fructan metabolism in these species at the molecular and genetic level is essential. Based on transcriptome data, this report describes the identification and molecular characterization of cDNAs and deduced amino acid sequences for genes encoding fructosyltransferases, invertases and fructan exohydrolases (FEH) (enzymes belonging to plant glycoside hydrolase family 32) from four different agave species (A. tequilana, A. deserti, A. victoriae-reginae, and A. striata). Conserved amino acid sequences and a hypervariable domain allowed classification of distinct isoforms for each enzyme type. Notably however neither 1-FFT nor 6-SFT encoding cDNAs were identified. In silico analysis revealed that distinct isoforms for certain enzymes found in a single species, showed different levels and tissue specific patterns of expression whereas in other cases expression patterns were conserved both within the species and between different species. Relatively high levels of in silico expression for specific isoforms of both invertases and fructosyltransferases were observed in floral tissues in comparison to vegetative tissues such as leaves and stems and this pattern was confirmed by Quantitative Real Time PCR using RNA obtained from floral and leaf tissue of A. tequilana. Thin layer chromatography confirmed the presence of fructans with degree of polymerization (DP) greater than DP three in both immature buds and fully opened flowers also obtained from A. tequilana.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA