Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(4)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33479179

RESUMO

We show that the Higgs mode of a superconductor, which is usually challenging to observe by far-field optics, can be made clearly visible using near-field optics by harnessing ultraconfined graphene plasmons. As near-field sources we investigate two examples: graphene plasmons and quantum emitters. In both cases the coupling to the Higgs mode is clearly visible. In the case of the graphene plasmons, the coupling is signaled by a clear anticrossing stemming from the interaction of graphene plasmons with the Higgs mode of the superconductor. In the case of the quantum emitters, the Higgs mode is observable through the Purcell effect. When combining the superconductor, graphene, and the quantum emitters, a number of experimental knobs become available for unveiling and studying the electrodynamics of superconductors.

2.
Nano Lett ; 23(10): 4242-4249, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37172322

RESUMO

A rigorous account of quantum nonlocal effects is paramount for understanding the optical response of metal nanostructures and for designing plasmonic devices at the nanoscale. Here, we present a scheme for retrieving the quantum surface response of metals, encapsulated in the Feibelman d-parameters, from electron energy-loss spectroscopy (EELS) and cathodoluminescence (CL) measurements. We theoretically demonstrate that quantum nonlocal effects have a dramatic impact on EELS and CL spectra, in the guise of spectral shifts and nonlocal damping, when either the system size or the inverse wave vector in extended structures approaches the nanometer scale. Our concept capitalizes on the unparalleled ability of free electrons to supply deeply subwavelength near-fields and, thus, probe the optical response of metals at length scales in which quantum-mechanical effects are apparent. These results pave the way for a widespread use of the d-parameter formalism, thereby facilitating a rigorous yet practical inclusion of nonclassical effects in nanoplasmonics.

3.
Rep Prog Phys ; 83(8): 082401, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32726300

RESUMO

Rooted in quantum optics and benefiting from its well-established foundations, strong coupling in nanophotonics has experienced increasing popularity in recent years. With nanophotonics being an experiment-driven field, the absence of appropriate theoretical methods to describe ground-breaking advances has often emerged as an important issue. To address this problem, the temptation to directly transfer and extend concepts already available from quantum optics is strong, even if a rigorous justification is not always available. In this review we discuss situations where, in our view, this strategy has indeed overstepped its bounds. We focus on exciton-plasmon interactions, and particularly on the idea of calculating the number of excitons involved in the coupling. We analyse how, starting from an unfounded interpretation of the term N/V that appears in theoretical descriptions at different levels of complexity, one might be tempted to make independent assumptions for what the number N and the volume V are, and attempt to calculate them separately. Such an approach can lead to different, often contradictory results, depending on the initial assumptions (e.g. through different treatments of V as the-ambiguous in plasmonics-mode volume). We argue that the source of such contradictions is the question itself-How many excitons are coupled?, which disregards the true nature of the coupled components of the system, has no meaning and often not even any practical importance. If one is interested in validating the quantum nature of the system-which appears to be the motivation driving the pursuit of strong coupling with small N-one could instead focus on quantities such as the photon emission rate or the second-order correlation function. While many of the issues discussed here may appear straightforward to specialists, our target audience is predominantly newcomers to the field, either students or scientists specialised in different disciplines. We have thus tried to minimise the occurrence of proofs and overly-technical details, and instead provide a qualitative discussion of analyses that should be avoided, hoping to facilitate further growth of this promising area.

4.
Opt Lett ; 44(3): 554-557, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30702677

RESUMO

Two-dimensional materials supporting deep-subwavelength plasmonic modes can also exhibit strong magneto-optical responses. Here, we theoretically investigate magnetoplasmons (MPs) in monolayer black phosphorus (BP) structures under moderate static magnetic fields. We consider three different structures, namely, a continuous BP monolayer, an edge formed by a semi-infinite sheet, and finally, a triangular wedge configuration. Each of these structures shows strongly anisotropic magneto-optical responses induced both by the external magnetic field and by the intrinsic anisotropy of the BP lattice. Starting from the magneto-optical conductivity of a single layer of BP, we derive the dispersion relation of the MPs in the considered geometries, using a combination of analytical, semi-analytical, and numerical methods. We fully characterize the MP dispersions and the properties of the corresponding field distributions, and we show that these structures sustain strongly anisotropic subwavelength modes that are highly tunable. Our results demonstrate that MPs in monolayer BP, with its inherent lattice anisotropy as well as magnetically induced anisotropy, hold potential for tunable anisotropic materials operating below the diffraction limit, thereby paving the way for tailored nanophotonic devices at the nanoscale.

5.
Sci Adv ; 10(25): eadp4096, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905338

RESUMO

The interaction between free electrons and optical fields constitutes a unique platform to investigate ultrafast processes in matter and explore fundamental quantum phenomena. Specifically, optically modulated electrons in ultrafast electron microscopy act as noninvasive probes that push space-time-energy resolution to the picometer-attosecond-microelectronvolt range. Electron energies well above the involved photon energies are commonly used, rendering a low electron-light coupling and, thus, only providing limited access to the wealth of quantum nonlinear phenomena underlying the dynamical response of nanostructures. Here, we theoretically investigate electron-light interactions between photons and electrons of comparable energies, revealing quantum and recoil effects that include a nonvanishing coupling of surface-scattered electrons to light plane waves, inelastic electron backscattering from confined optical fields, and strong electron-light coupling under grazing electron diffraction by an illuminated crystal surface. Our exploration of electron-light-matter interactions holds potential for applications in ultrafast electron microscopy.

6.
Nanoscale ; 15(28): 11852-11859, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37401202

RESUMO

Plasmons can be excited during photoemission and produce spectral photoelectron features that yield information on the nanoscale optical response of the probed materials. However, these so-called plasmon satellites have so far been observed only for planar surfaces, while their potential for the characterization of nanostructures remains unexplored. Here, we theoretically demonstrate that core-level photoemission from nanostructures can display spectrally narrow plasmonic features, reaching relatively high probabilities similar to the direct peak. Using a nonperturbative quantum-mechanical framework, we find a dramatic effect of nanostructure morphology and dimensionality as well as universal scaling laws for the plasmon-satellite probabilities. In addition, we introduce a pump-probe scheme in which plasmons are optically excited prior to photoemission, leading to plasmon losses and gains in the photoemission spectra and granting us access to the ultrafast dynamics of the sampled nanostructure. These results emphasize the potential of plasmon satellites to explore multi-plasmon effects and ultrafast electron-plasmon dynamics in metal-based nanoparticles and two-dimensional nanoislands.

7.
Nat Commun ; 13(1): 5175, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056011

RESUMO

Tuning electrical, optical, and thermal material properties is central for engineering and understanding solid-state systems. In this scenario, atomically thin materials are appealing because of their sensitivity to electric and magnetic gating, as well as to interlayer hybridization. Here, we introduce a radically different approach to material engineering relying on the image interaction experienced by electrons in a two-dimensional material when placed in proximity of an electrically neutral structure. We theoretically show that electrons in a semiconductor atomic layer acquire a quantum phase resulting from the image potential induced by the presence of a neighboring periodic array of conducting ribbons, which in turn modifies the optical, electrical, and thermal properties of the monolayer, giving rise to additional interband optical absorption, plasmon hybridization, and metal-insulator transitions. Beyond its fundamental interest, material engineering based on the image interaction represents a disruptive approach to tailor the properties of atomic layers for application in nanodevices.

8.
Nat Commun ; 13(1): 3105, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35661728

RESUMO

Historically, the field of plasmonics has been relying on the framework of classical electrodynamics, with the local-response approximation of material response being applied even when dealing with nanoscale metallic structures. However, when the confinement of electromagnetic radiation approaches atomic scales, mesoscopic effects are anticipated to become observable, e.g., those associated with the nonlocal electrodynamic surface response of the electron gas. Here, we investigate nonlocal effects in propagating gap surface plasmon modes in ultrathin metal-dielectric-metal planar waveguides, exploiting monocrystalline gold flakes separated by atomic-layer-deposited aluminum oxide. We use scanning near-field optical microscopy to directly access the near-field of such confined gap plasmon modes and measure their dispersion relation via their complex-valued propagation constants. We compare our experimental findings with the predictions of the generalized nonlocal optical response theory to unveil signatures of nonlocal damping, which becomes appreciable for few-nanometer-sized dielectric gaps.

9.
Nat Commun ; 12(1): 3271, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075036

RESUMO

A quantitative understanding of the electromagnetic response of materials is essential for the precise engineering of maximal, versatile, and controllable light-matter interactions. Material surfaces, in particular, are prominent platforms for enhancing electromagnetic interactions and for tailoring chemical processes. However, at the deep nanoscale, the electromagnetic response of electron systems is significantly impacted by quantum surface-response at material interfaces, which is challenging to probe using standard optical techniques. Here, we show how ultraconfined acoustic graphene plasmons in graphene-dielectric-metal structures can be used to probe the quantum surface-response functions of nearby metals, here encoded through the so-called Feibelman d-parameters. Based on our theoretical formalism, we introduce a concrete proposal for experimentally inferring the low-frequency quantum response of metals from quantum shifts of the acoustic graphene plasmons dispersion, and demonstrate that the high field confinement of acoustic graphene plasmons can resolve intrinsically quantum mechanical electronic length-scales with subnanometer resolution. Our findings reveal a promising scheme to probe the quantum response of metals, and further suggest the utilization of acoustic graphene plasmons as plasmon rulers with ångström-scale accuracy.

10.
Nat Commun ; 11(1): 366, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953379

RESUMO

Plasmon-emitter interactions are of central importance in modern nanoplasmonics and are generally maximal at short emitter-surface separations. However, when the separation falls below 10-20 nm, the classical theory deteriorates progressively due to its neglect of quantum effects such as nonlocality, electronic spill-out, and Landau damping. Here we show how this neglect can be remedied in a unified theoretical treatment of mesoscopic electrodynamics incorporating Feibelman [Formula: see text]-parameters. Our approach incorporates nonclassical resonance shifts and surface-enabled Landau damping-a nonlocal damping effect-which have a dramatic impact on the amplitude and spectral distribution of plasmon-emitter interactions. We consider a broad array of plasmon-emitter interactions ranging from dipolar and multipolar spontaneous emission enhancement, to plasmon-assisted energy transfer and enhancement of two-photon transitions. The formalism gives a complete account of both plasmons and plasmon-emitter interactions at the nanoscale, constituting a simple yet rigorous platform to include nonclassical effects in plasmon-enabled nanophotonic phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA