Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Neurosci ; 34(47): 15638-47, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25411492

RESUMO

Hormone and neurotransmitter release from vesicles is mediated by regulated exocytosis, where an aqueous channel-like structure, termed a fusion pore, is formed. It was recently shown that second messenger cAMP modulates the fusion pore, but the detailed mechanisms remain elusive. In this study, we asked whether the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are activated by cAMP, are involved in the regulation of unitary exocytic events. By using the Western blot technique, a real-time PCR, immunocytochemistry in combination with confocal microscopy, and voltage-clamp measurements of hyperpolarizing currents, we show that HCN channels are present in the plasma membrane and in the membrane of secretory vesicles of isolated rat lactotrophs. Single vesicle membrane capacitance measurements of lactotrophs, where HCN channels were either augmented by transfection or blocked with an HCN channel blocker (ZD7288), show modulated fusion pore properties. We suggest that the changes in local cation concentration, mediated through HCN channels, which are located on or near secretory vesicles, have an important role in modulating exocytosis.


Assuntos
AMP Cíclico/fisiologia , Exocitose/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/efeitos dos fármacos , Lactotrofos/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Células Cultivadas , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/antagonistas & inibidores , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Masculino , Técnicas de Patch-Clamp , Canais de Potássio/genética , Canais de Potássio/fisiologia , Ratos , Ratos Wistar
2.
J Neurosci ; 33(18): 8068-78, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23637196

RESUMO

Regulated exocytosis mediates the release of hormones and transmitters. The last step of this process is represented by the merger between the vesicle and the plasma membranes, and the formation of a fusion pore. Once formed, the initially stable and narrow fusion pore may reversibly widen (transient exocytosis) or fully open (full-fusion exocytosis). Exocytosis is typically triggered by an elevation in cytosolic calcium activity. However, other second messengers, such as cAMP, have been reported to modulate secretion. The way in which cAMP influences the transitions between different fusion pore states remains unclear. Here, hormone release studies show that prolactin release from isolated rat lactotrophs stimulated by forskolin, an activator of adenylyl cyclases, and by membrane-permeable cAMP analog (dbcAMP), exhibit a biphasic concentration dependency. Although at lower concentrations (2-10 µm forskolin and 2.5-5 mm dbcAMP) these agents stimulate prolactin release, an inhibition is measured at higher concentrations (50 µm forskolin and 10-15 mm dbcAMP). By using high-resolution capacitance (Cm) measurements, we recorded discrete increases in Cm, which represent elementary exocytic events. An elevation of cAMP leaves the frequency of full-fusion events unchanged while increasing the frequency of transient events. These exhibited a wider fusion pore as measured by increased fusion pore conductance and a prolonged fusion pore dwell time. The probability of observing rhythmic reopening of transient fusion pores was elevated by dbcAMP. In conclusion, cAMP-mediated stabilization of wide fusion pores prevents vesicles from proceeding to the full-fusion stage of exocytosis, which hinders vesicle content discharge at high cAMP concentrations.


Assuntos
AMP Cíclico/metabolismo , Lactotrofos/efeitos dos fármacos , Fusão de Membrana/fisiologia , Hipófise/citologia , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Bucladesina/farmacologia , Células Cultivadas , Colforsina/farmacologia , Relação Dose-Resposta a Droga , Exocitose/efeitos dos fármacos , Masculino , Fusão de Membrana/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp , Inibidores de Fosfodiesterase/farmacologia , Prolactina/metabolismo , Ratos , Ratos Wistar
3.
Mol Biol Rep ; 41(1): 297-307, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24234751

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play a critical role in a broad range of cell types, but the expression of the various HCN isoforms is still poorly understood. In the present study we have compared the expression of HCN isoforms in rat excitable and non-excitable tissues at both the mRNA and protein levels. Real-time PCR and Western blot analysis revealed distinct expression patterns of the four HCN isoforms in brain, heart, pituitary and kidney, with inconsistent mRNA-protein expression correlation. The HCN2 was the most abundant mRNA transcript (95.6, 78.0 and 59.0 % in kidney heart and pituitary, respectively) except in the brain (42.0 %) whereas HCN4 was the most abundant protein isoform. Our results suggest that HCN channels are mostly produced by the HCN4 isoform in heart, which contrasts with the sharp differences in the isoform stoichiometry in pituitary (15 HCN4:2 HCN2:1 HCN1:1 HCN3), kidney (24 HCN4:2 HCN3:1 HCN2:1 HCN1) and brain (3 HCN4:2 HCN2:1 HCN1:1 HCN3). Moreover, deviations of the electrophoretic molecular weight (MW) of the HCN isoforms relative to the theoretical MW were observed, suggesting that N-glycosylation and enzymatic proteolysis influences HCN channel surface expression. We hypothesize that selective cleavage of HCN channels by membrane bound metalloendopeptidases could account for the multiplicity of properties of native HCN channels in different tissues.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Animais , Encéfalo/metabolismo , Expressão Gênica , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Rim/metabolismo , Masculino , Miocárdio/metabolismo , Especificidade de Órgãos , Hipófise/metabolismo , Isoformas de Proteínas/metabolismo , Transporte Proteico , Ratos , Ratos Wistar
4.
J Neurochem ; 126(1): 37-46, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23607712

RESUMO

A low-affinity Ca²âº/H⁺-antiport was described in the membrane of mammalian brain synaptic vesicles. Electrophysiological studies showed that this antiport contributes to the extreme brevity of excitation-release coupling in rapid synapses. Synaptotagmin-1, a vesicular protein interacting with membranes upon low-affinity Ca²âº-binding, plays a major role in excitation-release coupling, by synchronizing calcium entry with fast neurotransmitter release. Here, we report that synaptotagmin-1 is necessary for expression of the vesicular Ca²âº/H⁺-antiport. We measured Ca²âº/H⁺-antiport activity in vesicles and granules of pheochromocytoma PC12 cells by three methods: (i) Ca²âº-induced dissipation of the vesicular H⁺-gradient; (ii) bafilomycin-sensitive calcium accumulation and (iii) pH-jump-induced calcium accumulation. The results were congruent and highly significant: Ca²âº/H⁺-antiport activity is detectable only in acidic organelles expressing functional synaptotagmin-1. In contrast, synaptotagmin-1-deficient cells--and cells where transgenically encoded synaptotagmin-1 was acutely photo-inactivated--were devoid of any Ca²âº/H⁺-antiport activity. Therefore, in addition to its previously described functions, synaptotagmin-1 is involved in a rapid vesicular Ca²âº sequestration through a Ca²âº/H⁺ antiport.


Assuntos
Antiporters/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Sinaptotagmina I/fisiologia , Antiporters/antagonistas & inibidores , Química Encefálica/efeitos dos fármacos , Cálcio/metabolismo , Cálcio/farmacologia , Proteínas de Transporte de Cátions/antagonistas & inibidores , Células Clonais , Inibidores Enzimáticos/farmacologia , Imunofluorescência , Corantes Fluorescentes , Humanos , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Ionomicina/farmacologia , Macrolídeos/farmacologia , Células PC12 , Sistema Nervoso Periférico/citologia , Sistema Nervoso Periférico/efeitos dos fármacos , Sistema Nervoso Periférico/metabolismo , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/genética , Transfecção , Proteína 1 Associada à Membrana da Vesícula/antagonistas & inibidores , Proteína 1 Associada à Membrana da Vesícula/imunologia
5.
Cell Calcium ; 109: 102687, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528978

RESUMO

Regulated exocytosis consists of the fusion between vesicles and the plasma membranes, leading to the formation of a narrow fusion pore through which secretions exit the vesicle lumen into the extracellular space. An increase in the cytosolic concentration of free Ca2+ ([Ca2+]i) is considered the stimulus of this process. However, whether this mechanism can be preserved in a simplified system of membrane lawns with docked secretory vesicles, devoid of cellular components, is poorly understood. Here, we studied peptide discharge from individual secretory vesicles docked at the plasma membrane, prepared from primary endocrine pituitary cells (the lactotrophs), releasing hormone prolactin. To label secretory vesicles, we transfected lactotrophs to express the fluorescent atrial natriuretic peptide (ANP.emd), previously shown to be expressed in and released from prolactin-containing vesicles. We used stimulating solutions containing different [Ca2+] to evoke vesicle peptide discharge, which appeared similar in membrane lawns and in intact stimulated lactotrophs. All vesicles examined discharged peptides in a subquantal manner, either exhibiting a unitary or sequential time course. In the membrane lawns, the unitary vesicle peptide discharge was predominant and slightly slower than that recorded in intact cells, but with a shorter delay with respect to the stimulation onset. This study revealed directly that Ca2+ triggers peptide discharge from docked single vesicles in the membrane lawns with a half-maximal response of ∼8 µM [Ca2+], consistent with previous whole-cell patch-clamp studies in endocrine cells where the rapid component of exocytosis, interpreted to represent docked vesicles, was fully activated at <10 µM [Ca2+]. Interestingly, the sequential subquantal peptide vesicle discharge indicates that fluctuations between constricted and dilated fusion pore states are preserved in membrane lawns and that fusion pore regulation appears to be an autonomously controlled process.


Assuntos
Lactotrofos , Ratos , Animais , Lactotrofos/metabolismo , Cálcio/metabolismo , Prolactina/metabolismo , Ratos Wistar , Fusão de Membrana/fisiologia , Peptídeos/metabolismo , Vesículas Secretórias/metabolismo , Exocitose/fisiologia
6.
J Physiol ; 589(Pt 1): 149-67, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21059764

RESUMO

We investigated the physiological role of the vesicular Ca2+/H+ antiport in rapid synaptic transmission using the Torpedo electric organ (a modified neuromuscular system). By inhibiting V-type H+-transporting ATPase (V-ATPase), bafilomycin A1 dissipates the H+ gradient of synaptic vesicles, thereby abolishing the Ca2+/H+ antiport driving force. In electrophysiology experiments, bafilomycin A1 significantly prolonged the duration of the evoked electroplaque potential. A biochemical assay for acetylcholine (ACh) release showed that the effect of bafilomycin A1 was presynaptic. Indeed, bafilomycin A1 increased the amount of radio-labelled ACh released in response to paired-pulse stimulation. Bafilomycin A1 also enhanced Ca2+-dependent ACh release from isolated nerve terminals (synaptosomes). The bafilomycin-induced electroplaque potential lengthening did not arise from cholinesterase inhibition, since eserine (which also prolonged the electroplaque potential) strongly decreased evoked ACh release. Bafilomycin A1 augmented the amount of calcium accumulating in nerve terminals following a short tetanic stimulation and delayed subsequent calcium extrusion. By reducing stimulation-dependent calcium accumulation in synaptic vesicles, bafilomycin A1 diminished the corresponding depletion of vesicular ACh, as tested using both intact tissue and isolated synaptic vesicles. Strontium ions inhibit the vesicular Ca2+/H+ antiport, while activating transmitter release at concentrations one order of magnitude higher than Ca2+ does. In the presence of Sr2+ the time course of the electroplaque potential was also prolonged but, unlike bafilomycin A1, Sr2+ enhanced facilitation in paired-pulse experiments. It is therefore proposed that the vesicular Ca2+/H+ antiport function is to shorten 'phasic' transmitter release, allowing the synapse to transmit briefer impulses and so to work at higher frequencies.


Assuntos
Acetilcolina/metabolismo , Antiporters/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Órgão Elétrico/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , Animais , Inibidores da Colinesterase/farmacologia , Órgão Elétrico/efeitos dos fármacos , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Potenciais Evocados , Feminino , Cinética , Macrolídeos/farmacologia , Masculino , Fisostigmina/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Estrôncio/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos , Sinaptossomos/metabolismo , Torpedo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/metabolismo
7.
Cell Biol Toxicol ; 26(4): 341-53, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20052527

RESUMO

Prolonged exposure to aluminium may impact health. Aluminium's deleterious effects are mostly attributed to its selective accumulation in particular organs and cell types. Occupational exposure to aluminium is allied with a reduced level of serum prolactin, a stress peptide hormone mainly synthesised and secreted by the anterior pituitary lactotrophs. Our aim was to study the effect of aluminium on the viability of rat lactotrophs in primary suspension cultures where multicellular aggregates tend to form, comprising approximately two thirds of the total cell population as confirmed by confocal microscopy. Flow cytometric light scattering of calcein acetoxymethyl ester and ethidium homodimer-1 labelled cells was used to define subpopulations of live and dead cells in heterogeneous suspensions comprised of single cells and multicellular aggregates of distinct size. Concentration-dependent effects of AlCl(3) were observed on aggregate size and cell survival. After 24-h exposure to 3 mM AlCl(3), viability of single cells declined from 5% to 3%, while in multicellular aggregates, viability declined from 23% to 20%. The proportion of single cells increased from 30% to 42% within the same concentration range, while in large aggregates, the proportion remained approximately constant representing 35% of the cell suspension. In large aggregates, cell viability (75%) remained unaltered after exposure to AlCl(3) concentrations up to 300 microM, while in single cells, viability was halved at 30 microM. In conclusion, our finding indicates that prolonged exposure to aluminium may lead to significant loss of pituitary cells.


Assuntos
Compostos de Alumínio/toxicidade , Cloretos/toxicidade , Citometria de Fluxo/métodos , Lactotrofos/citologia , Lactotrofos/efeitos dos fármacos , Cloreto de Alumínio , Animais , Agregação Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Masculino , Microscopia Confocal , Ratos , Ratos Wistar
8.
Endocrinology ; 149(10): 4948-57, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18556353

RESUMO

In neuroendocrine cells, discharge of hormones follows the fusion of exocytotic vesicles with the plasma membrane at confined sites; however, the molecular nature of these distinct sites remains poorly understood. We studied intact pituitary lactotrophs and plasma membrane lawns by confocal microscopy in conjunction with antibodies against rat prolactin (rPRL), soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) proteins (syntaxin-1 and synaptobrevin-2,) and fluorescent cholera toxin subunit B (CT-B), a marker of ganglioside monosialic acid (GM1) lipid rafts, to examine 1) whether rPRL vesicles discharge cargo at GM1 rafts, 2) whether discharging rPRL vesicles interact with SNAREs, and 3) to examine the overlap of GM1 rafts, rPRL, and syntaxin-1 sites in plasma membrane lawns. In intact cells, immunofluorescently labeled rPRL poorly colocalized (<6%) with CT-B. In conditions favoring endocytotic trafficking, vesicle SNARE synaptobrevin-2 modestly colocalized (35%) with CT-B, whereas it highly colocalized (58%) with retrieved rPRL. Although partial mixing between rPRL and CT-B intracellular trafficking pathways is likely, our results indicated that rPRL discharge involves interactions with plasma membrane SNAREs, but not with GM1 rafts. In support of this, the plasma membrane SNARE syntaxin-1 poorly colocalized with CT-B (<5%), whereas it highly colocalized (75%) with rPRL in inside-out plasma membrane lawns. Spontaneous and stimulated rPRL discharge in live lactotrophs is thus associated with plasma membrane sites enriched with SNARE proteins, however, spatially confined to plasma membrane areas other than GM1 rafts.


Assuntos
Lactotrofos/metabolismo , Microdomínios da Membrana/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Prolactina/metabolismo , Sintaxina 1/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Toxina da Cólera , Gangliosídeo G(M1)/metabolismo , Imuno-Histoquímica , Masculino , Transporte Proteico/fisiologia , Ratos , Ratos Wistar , Proteínas SNARE/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo
9.
Biol Bull ; 214(1): 1-5, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18258770

RESUMO

Acetylcholine (ACh), which is synthesized from choline (Ch), is believed to hold a central place in signaling mechanisms within the central nervous system (CNS) of cuttlefish (Sepia officinalis) and other coleoid cephalopods. Although the main elements required for cholinergic function have been identified in cephalopods, the transmembrane translocation events promoting the release of ACh and the uptake of Ch remain largely unsolved. The ACh release and Ch uptake were quantitatively studied through the use of in vitro chemiluminescence and isotopic methods on a subcellular fraction enriched in synaptic nerve endings (synaptosomes) isolated from cuttlefish optic lobe. The ACh release evoked by K+ depolarization was found to be very high (0.04 pmol ACh.s(-1).mg(-1) protein). In response to stimulation by veratridine, a secretagogue (a substance that induces secretion) that targets voltage-gated Na+ channels, the release rate and the total amount of ACh released were significantly lower, by 10-fold, than the response induced by KCl. The high-affinity uptake of choline was also very high (31 pmol Ch.min(-1).mg(-1) protein). The observed ACh release and Ch uptake patterns are in good agreement with published data on preparations characterized by high levels of ACh metabolism, adding further evidence that ACh acts as a neurotransmitter in cuttlefish optic lobe.


Assuntos
Acetilcolina/metabolismo , Colina/metabolismo , Lobo Óptico de Animais não Mamíferos/metabolismo , Sepia/metabolismo , Sinaptossomos/metabolismo , Animais , Lobo Óptico de Animais não Mamíferos/efeitos dos fármacos , Cloreto de Potássio , Veratridina/farmacologia
10.
Toxicology ; 236(3): 158-77, 2007 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-17560001

RESUMO

Closing the gap between adverse health effects of aluminum and its mechanisms of action still represents a huge challenge. Cholinergic dysfunction has been implicated in neuronal injury induced by aluminum. Previously reported data also indicate that in vivo and in vitro exposure to aluminum inhibits the mammalian (Na(+)/K(+))ATPase, an ubiquitous plasma membrane pump. This study was undertaken with the specific aim of determining whether in vitro exposure to AlCl(3) and ouabain, the foremost utilized selective inhibitor of (Na(+)/K(+))ATPase, induce similar functional modifications of cholinergic presynaptic nerve terminals, by comparing their effects on choline uptake, acetylcholine release and (Na(+)/K(+))ATPase activity, on subcellular fractions enriched in synaptic nerve endings isolated from rat brain, cuttlefish optic lobe and torpedo electric organ. Results obtained show that choline uptake by rat synaptosomes was inhibited by submillimolar AlCl(3), whereas the amount of choline taken up by synaptosomes isolated from cuttlefish and torpedo remained unchanged. Conversely, choline uptake was reduced by ouabain to a large extent in all synaptosomal preparations analyzed. In contrast to ouabain, which modified the K(+) depolarization evoked release of acetylcholine by rat, cuttlefish and torpedo synaptosomal fractions, AlCl(3) induced reduction of stimulated acetylcholine release was only observed when rat synaptosomes were challenged. Finally, it was observed that the aluminum effect on cuttlefish and torpedo synaptosomal (Na(+)/K(+))ATPase activity was slight when compared to its inhibitory action on mammalian (Na(+)/K(+))ATPase. In conclusion, inhibition of (Na(+)/K(+))ATPase by AlCl(3) and ouabain jeopardized the high-affinity (Na(+)-dependent, hemicholinium-3 sensitive) uptake of choline and the Ca(2+)-dependent, K(+) depolarization evoked release of acetylcholine by rat, cuttlefish and torpedo synaptosomal fractions. The effects of submillimolar AlCl(3) on choline uptake and acetylcholine release only resembled those of ouabain when rat synaptosomes were assayed. Therefore, important differences were found between the species regarding the cholinotoxic action of aluminum. The variability of (Na(+)/K(+))ATPase sensitivity to aluminum of cholinergic neurons might contribute to their differential susceptibility to this neurotoxic agent.


Assuntos
Acetilcolina/metabolismo , Compostos de Alumínio/toxicidade , Cloretos/toxicidade , Colina/metabolismo , Inibidores Enzimáticos/toxicidade , Ouabaína/toxicidade , ATPase Trocadora de Sódio-Potássio/metabolismo , Sinaptossomos/efeitos dos fármacos , Cloreto de Alumínio , Sequência de Aminoácidos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteínas de Transporte de Cátions/química , Fracionamento Celular , Decapodiformes , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Órgão Elétrico/efeitos dos fármacos , Órgão Elétrico/metabolismo , Técnicas In Vitro , Masculino , Dados de Sequência Molecular , Lobo Óptico de Animais não Mamíferos/efeitos dos fármacos , Lobo Óptico de Animais não Mamíferos/metabolismo , Ratos , Ratos Wistar , Alinhamento de Sequência , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Sinaptossomos/metabolismo , Torpedo
11.
J Inorg Biochem ; 101(9): 1291-338, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17675244

RESUMO

Neurobehavioral disorders, except their most overt form, tend to lie beyond the reach of clinicians. Presently, the use of molecular data in the decision-making processes is limited. However, as details of the mechanisms of neurotoxic action of aluminium become clearer, a more complete picture of possible molecular targets of aluminium can be anticipated, which promises better prediction of the neurotoxicological potential of aluminium exposure. In practical terms, a critical analysis of current data on the effects of aluminium on neurotransmission can be of great benefit due to the rapidly expanding knowledge of the neurotoxicological potential of aluminium. This review concludes that impairment of neurotransmission is a strong predictor of outcome in neurobehavioral disorders. Key questions and challenges for future research into aluminium neurotoxicity are also identified.


Assuntos
Alumínio/toxicidade , Transmissão Sináptica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Humanos , Neurotransmissores/metabolismo
12.
J Mol Neurosci ; 30(1-2): 41-4, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17192621

RESUMO

Rapid secretion relies on the occurrence of spike-like Ca2+ transients in active zones (Llinás et al., 1992; Yazejian et al., 2000; Dunant and Bloc, 2003). Presynaptic Ca2+ nanodomains are to be restricted both in time and in space as to assure rapid onset and termination of transmitter release (Llinás et al., 1992; Pozzan et al., 1994; Yazejian et al., 2000; Dunant and Bloc, 2003). A very fast Ca2+-buffering mechanism should allow Ca2+ rise above approximately 100 microM for less than approximately 250 micros and then rapid reduction of Ca2+ to subthreshold levels of release (Llinás et al., 1992; Pozzan et al., 1994; Yazejian et al., 2000; Dunant and Bloc, 2003). Swift Ca2+ clearance by vesicular Ca2+/H+ antiport as a low-affinity, high-capacity extrusion mechanism was postulated in the past (Pozzan et al., 1994; Dunant and Bloc, 2003). We demonstrated pH gradient (DeltapH)-dependent Ca2+ uptake by mammalian brain synaptic vesicles (Gonçalves et al., 1998, 2000). Moreover, this antiport activity is effective at [Ca2+] ranging from approximately 100 to 800 microM (max. at approximately 500 microM) (Gonçalves et al., 1998, 2000). We now show that the time course of acetylcholine (ACh) secretion in Torpedo neuroelectrocytic synapse is modified by bafilomycin A1 (baf.), which compromises antiport activity. Along with this mechanism, synaptic vesicles also have a P-type Ca2+ ATPase, exhibiting half-maximal activation for 0.6 microM Ca2+ (Gonçalves et al., 2000). Here, we demonstrate the role of P-type Ca2+ ATPase in preventing desensitization of the release mechanism by inhibiting it with orthovanadate.


Assuntos
Acetilcolina/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Órgão Elétrico/efeitos dos fármacos , Órgão Elétrico/metabolismo , Peixes , Cinética , Macrolídeos/farmacologia , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
13.
Toxicol Sci ; 88(2): 485-94, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16162844

RESUMO

The ability of aluminum to inhibit the (Na(+)/K(+))ATPase activity has been observed by several investigators. The (Na(+)/K(+))ATPase is characterized by a complex molecular heterogeneity that results from the expression and differential association of multiple isoforms of both catalytic (alpha) and regulatory (beta) subunits. For instance, three main alpha (alpha(1), alpha(2) and alpha(3)) and three beta (beta(1), beta(2) and beta(3)) subunit isoforms exist in vertebrate nervous tissue, whereas only alpha(1) and beta(1) have been identified in kidney. However, no studies have focused on determining the change in (Na(+)/K(+))ATPase isoforms caused by chronic exposure to aluminum and its relation with aluminum toxicity. In this study, adult male Wistar rats were submitted to chronic dietary AlCl(3) exposure (0.03 g/day of AlCl(3) for 4 months), and the activity and protein expression of (Na(+)/K(+))ATPase isozymes were studied in brain cortex synaptosomes and in kidney homogenates. The intracellular levels of adenine nucleotides, plasma membrane integrity, and aluminum accumulation were also studied in brain synaptosomes. Aluminum accumulation upon chronic dietary AlCl(3) administration significantly decreased the (Na(+)/K(+))ATPase activity measured in the presence of nonlimiting Mg-ATP concentrations, without compromising protein expression of alpha-subunit isoforms in brain and kidney. Aluminum-induced synaptosomal (Na(+)/K(+))ATPase inhibition was due to a reduction in the activity of isozymes containing alpha(1)-alpha(2) and alpha(3)-subunits. The onset of enzyme inhibition was accompanied by a decrease of the (Na(+)/K(+))ATPase sensitivity to submicromolar concentrations of ouabain, and it preceded major damage in plasma membrane integrity and energy supply, as revealed by the analysis of lactate dehydrogenase leakage and endogenous adenine nucleotides. The data suggest that, during chronic dietary exposure to AlCl(3), brain (Na(+)/K(+))ATPase activity drops, even if no significant alterations of catalytic subunit protein expression, cellular energy depletion, and changes in cell membrane integrity are observed. Implications regarding underlying mechanisms of aluminum neurotoxicity are discussed.


Assuntos
Alumínio/toxicidade , Córtex Cerebral/enzimologia , Inibidores Enzimáticos/toxicidade , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Sinaptossomos/enzimologia , Nucleotídeos de Adenina/metabolismo , Alumínio/farmacocinética , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Córtex Cerebral/efeitos dos fármacos , Dieta , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Rim/efeitos dos fármacos , Rim/enzimologia , L-Lactato Desidrogenase , Masculino , Ouabaína/farmacologia , Ratos , ATPase Trocadora de Sódio-Potássio/metabolismo , Sinaptossomos/efeitos dos fármacos
14.
Neurosci Res ; 44(2): 181-93, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12354633

RESUMO

In the present work, we studied the effect of cholesterol/phospholipid (CH/PL) molar ratio on aluminum accumulation and aluminum-induced alteration of membrane fluidity in rat brain cortex synaptosomes. We observed that sub-acute (daily supply of 1.00 g of AlCl(3) during 10 days) and chronic (daily supply of 0.03 g of AlCl(3) during 4 months) exposure to dietary aluminum leads to a synaptosomal aluminum enrichment of 45 and 59%, respectively. During chronic exposure to AlCl(3), the enhancement of aluminum content was prevented by administration of colestipol (0.31 g/day), which decreased the synaptosomal membrane CH/PL molar ratio (nmol/nmol) from 1.2 to 0.4. Fluorescence anisotropy analysis, using 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-(trimethylamino)phenyl)-6-phenylhexa-1,3,5-triene (TMA-DPH), showed that after treatment with colestipol a decrease in membrane order occurs at the level of hydrophilic lipid-water surface and deeper hydrophobic region of the synaptosomal membrane. When the rats were exposed to aluminum, it was observed a significant enhancement of membrane fluidity, which was more pronounced at the level of the membrane hydrophilic regions. Meanwhile, when chronic exposure to dietary AlCl(3) was accompanied by treatment with colestipol, the aluminum-induced decrease in membrane order was negligible when compared to TMA-DPH and DPH anisotropy values measured upon colestipol treatment. In contrast, in vitro incubation of synaptosomes (isolated from control rats) with AlCl(3) induced a concentration-dependent rigidification of this more hydrophilic membrane region. The opposite action of aluminum on synaptosomal membrane fluidity, during in vivo and in vitro experiments, appears to be explained by alteration of synaptosomal CH/PL molar ratio, since a significant reduction (approximately 80%) of this parameter occurs during in vivo exposure to aluminum. In conclusion, during in vivo exposure to aluminum, fluidification of hydrophilic regions and reduction of CH/PL molar ratio of presynaptic membranes accompany the accumulation of this cation, which appear to restrict aluminum retention in brain cortex nerve terminals.


Assuntos
Alumínio/toxicidade , Membrana Celular/efeitos dos fármacos , Colesterol/metabolismo , Fluidez de Membrana/efeitos dos fármacos , Lipídeos de Membrana/metabolismo , Terminações Pré-Sinápticas/efeitos dos fármacos , Alumínio/antagonistas & inibidores , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Membrana Celular/metabolismo , Colestipol/farmacologia , Interações Medicamentosas/fisiologia , Alimentos Formulados , Hipolipemiantes/farmacologia , Masculino , Fluidez de Membrana/fisiologia , Fosfolipídeos/metabolismo , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Wistar , Sinaptossomos
15.
J Inorg Biochem ; 97(1): 143-50, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-14507470

RESUMO

The effect of AlCl(3) on the (Na(+)/K(+))ATPase activity of freeze-thawed synaptosomes, isolated from rat brain cortex, has been studied. The AlCl(3) action on the enzyme hydrolytic activity was examined using in vitro and in vivo approaches. Following exposure to AlCl(3) using both in vitro (synaptosomes incubated in the presence of AlCl(3) for 5 min) and in vivo (synaptosomes isolated from rats that received 0.03 g AlCl(3)/day for 4 months) approaches, the (Na(+)/K(+))ATPase activity was inhibited in a concentration-dependent way. The maximal inhibitory effect (approximately 60%) was observed in the presence of a AlCl(3) concentration >75 microM and at non-limiting ATP concentrations. Conversely, AlCl(3) did not inhibit the enzyme activity when UTP was used as substrate instead of ATP. Analysis of the substrate dependence of membrane-bound (Na(+)/K(+))ATPase by a computer simulation model suggests that the AlCl(3)-induced inhibitory effect is characterised by a reduction of the rate-limiting step velocity of the reaction cycle. Moreover, it seems that aluminium can induce impairment of the interprotomeric interaction within the oligomeric ensemble of membrane-bound (Na(+)/K(+))ATPase. In fact, this effect was accompanied by a slight, but significant, decrease of readily accessible SH groups, which are involved in the maintenance of the membrane-bound (Na(+)/K(+))ATPase oligomeric structure. In conclusion, during exposure to aluminium, reduction of the activation of membrane-bound (Na(+)/K(+))ATPase by high ATP concentrations occurs, which results in a partial inhibition of the enzyme.


Assuntos
Alumínio/farmacologia , Córtex Cerebral/enzimologia , Inibidores Enzimáticos/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Sinaptossomos/enzimologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Alumínio/química , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Simulação por Computador , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Cinética , Magnésio/química , Magnésio/farmacologia , Masculino , Ouabaína/farmacologia , Ratos , Especificidade por Substrato , Compostos de Sulfidrila/análise , Sinaptossomos/química , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Uridina Trifosfato/metabolismo
16.
Endocrinology ; 154(3): 1235-46, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23372020

RESUMO

In this study we used live-cell immunocytochemistry and confocal microscopy to study the release from a single vesicle in a simplified system called membrane lawns. The lawns were prepared by exposing differentiated pituitary prolactin (PRL)-secreting cells to a hypoosmotic shear stress. The density of the immunolabeled ternary soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) complexes that bind complexin was approximately 10 times lower than the PRL-positive, lawn-resident vesicles; this indicates that some but not all vesicles are associated with ternary SNARE complexes. However, lawn-resident PRL vesicles colocalized relatively well with particular SNARE proteins: synaptobrevin 2 (35%), syntaxin 1 (22%), and 25-kDa synaptosome associated protein (6%). To study vesicle discharge, we prepared lawn-resident vesicles, derived from atrial natriuretic peptide tagged with emerald fluorescent protein (ANP.emd)-transfected cells, which label vesicles. These maintained the structural passage to the exterior because approximately 40% of ANP.emd-loaded vesicles were labeled by extracellular PRL antibodies. Cargo release from the lawn-resident vesicles, monitored by the decline in the ANP.emd fluorescence intensity, was similar to that in intact cells. It is likely that SNARE proteins are required for calcium-dependent release from these vesicles. This is because the expression of the dominant-negative SNARE peptide, which interferes with SNARE complex formation, reduced the number of PRL-positive spots per cell (PRL antibodies placed extracellularly) significantly, from 58 ± 9 to 4 ± 2. In dominant-negative SNARE-treated cells, the PRL-positive area was reduced from 0.259 ± 0.013 to 0.123 ± 0.014 µm(2), which is consistent with a hindered vesicle luminal access for extracellular PRL antibodies. These results indicate that vesicle discharge is regulated by SNARE-mediated fusion pore widening.


Assuntos
Hipófise/metabolismo , Prolactina/metabolismo , Proteínas SNARE/fisiologia , Vesículas Secretórias/metabolismo , Animais , Cálcio/metabolismo , Diferenciação Celular , Imuno-Histoquímica , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Fusão de Membrana/fisiologia , Microscopia Confocal , Hipófise/citologia , Ratos , Ratos Wistar , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vesículas Secretórias/ultraestrutura , Sinaptossomos/fisiologia , Sintaxina 1/fisiologia , Proteína 2 Associada à Membrana da Vesícula/fisiologia
17.
Nanoscale ; 2(12): 2855-63, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20936241

RESUMO

As interest in using carbon nanotubes for developing biologically compatible systems continues to grow, biological inspiration is stimulating new directions for in vivo approaches. The ability to integrate nanotechnology-based systems in the body will provide greater successes if the implanted material is made to mimic elements of the biological milieu especially through tuning physical and chemical characteristics. Here, we demonstrate the highly successful capacity for in vivo implantation of a new carbon nanotube-based composite that is, itself, integrated with a hydroxyapatite-polymethyl methacrylate to create a nanocomposite. The success of this approach is grounded in finely tailoring the physical and chemical properties of this composite for the critical demands of biological integration. This is accomplished through controlling the surface modification scheme, which affects the interactions between carbon nanotubes and the hydroxyapatite-polymethyl methacrylate. Furthermore, we carefully examine cellular response with respect to adhesion and proliferation to examine in vitro compatibility capacity. Our results indicate that this new composite accelerates cell maturation through providing a mechanically competent bone matrix; this likely facilitates osteointegration in vivo. We believe that these results will have applications in a diversity of areas including carbon nanotube, regeneration, chemistry, and engineering research.


Assuntos
Materiais Biomiméticos/química , Nanotubos de Carbono/química , Animais , Materiais Biomiméticos/uso terapêutico , Osso e Ossos/patologia , Linhagem Celular Tumoral , Durapatita/química , Durapatita/uso terapêutico , Humanos , Polimetil Metacrilato/química , Polimetil Metacrilato/uso terapêutico , Ovinos
18.
Ann N Y Acad Sci ; 1152: 100-12, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19161381

RESUMO

In rapid synapses, neurotransmitter quanta are emitted in less than 100 mus, often at a high frequency. Using fast cryofixation of synapses, we found a very brief (2-3 ms) change affecting intramembrane particles in presynaptic membrane. Vesicle openings also occurred but after a significant delay. The particle change is most probably linked to mediatophore, a proteolipid of 220 kDa. Mediatophore aggregates were demonstrated in active zones of the presynaptic membrane. Reconstituted in liposomes, Xenopus oocytes, and neuroblastoma cells, mediatophore releases acetylcholine in a Ca(2+)-dependent and quantal manner, mimicking physiological release. In restricted presynaptic "nanodomains," Ca(2+) concentration explosively reaches a high level and then vanishes with a time constant of 300-400 micros. Among the processes contributing to the fast phase of Ca(2+) buffering, a vesicular Ca(2+)/H(+) antiport plays a major role. Energized by the Vesicular-ATPase-dependent proton gradient, the antiport has a low affinity for Ca(2+). We inactivated the Ca(2+)/H(+) antiport using bafilomycin A1, which annihilates the proton gradient. As a result, the postsynaptic potential was increased in duration for about 3 ms, an effect caused by persistence of transmitter release. A similar change was obtained by replacing extracellular Ca(2+) by strontium, which inhibits the antiport. The antiport function, therefore, is to abbreviate the presynaptic Ca(2+) signal, making transmitter release briefer. This allows transmission to operate at high frequency. Following a brief period of stimulation, calcium transiently accumulates in synaptic vesicles where it is exchanged against transmitter. Calcium is subsequently cleared from the terminal, most probably by exocytosis.


Assuntos
Antiporters/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Exocitose , Proteínas do Tecido Nervoso/metabolismo , Transmissão Sináptica , Animais , Cálcio/metabolismo , Receptores Colinérgicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA