Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(4): e2316724121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232284

RESUMO

Photoelectrochemical (PEC) carbon dioxide (CO2) reduction (CO2R) holds the potential to reduce the costs of solar fuel production by integrating CO2 utilization and light harvesting within one integrated device. However, the CO2R selectivity on the photocathode is limited by the lack of catalytic active sites and competition with the hydrogen evolution reaction. On the other hand, serious parasitic light absorption occurs on the front-side-illuminated photocathode due to the poor light transmittance of CO2R cocatalyst films, resulting in extremely low photocurrent density at the CO2R equilibrium potential. This paper describes the design and fabrication of a photocathode consisting of crystal phase-modulated Ag nanocrystal cocatalysts integrated on illumination-reaction decoupled heterojunction silicon (Si) substrate for the selective and efficient conversion of CO2. Ag nanocrystals containing unconventional hexagonal close-packed phases accelerate the charge transfer process in CO2R reaction, exhibiting excellent catalytic performance. Heterojunction Si substrate decouples light absorption from the CO2R catalyst layer, preventing the parasitic light absorption. The obtained photocathode exhibits a carbon monoxide (CO) Faradaic efficiency (FE) higher than 90% in a wide potential range, with the maximum FE reaching up to 97.4% at -0.2 V vs. reversible hydrogen electrode. At the CO2/CO equilibrium potential, a CO partial photocurrent density of -2.7 mA cm-2 with a CO FE of 96.5% is achieved in 0.1 M KHCO3 electrolyte on this photocathode, surpassing the expensive benchmark Au-based PEC CO2R system.

2.
Chem Rev ; 124(6): 2955-3012, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38478971

RESUMO

The structure of catalysts determines the performance of catalytic processes. Intrinsically, the electronic and geometric structures influence the interaction between active species and the surface of the catalyst, which subsequently regulates the adsorption, reaction, and desorption behaviors. In recent decades, the development of catalysts with complex structures, including bulk, interfacial, encapsulated, and atomically dispersed structures, can potentially affect the electronic and geometric structures of catalysts and lead to further control of the transport and reaction of molecules. This review describes comprehensive understandings on the influence of electronic and geometric properties and complex catalyst structures on the performance of relevant heterogeneous catalytic processes, especially for the transport and reaction over structured catalysts for the conversions of light alkanes and small molecules. The recent research progress of the electronic and geometric properties over the active sites, specifically for theoretical descriptors developed in the recent decades, is discussed at the atomic level. The designs and properties of catalysts with specific structures are summarized. The transport phenomena and reactions over structured catalysts for the conversions of light alkanes and small molecules are analyzed. At the end of this review, we present our perspectives on the challenges for the further development of structured catalysts and heterogeneous catalytic processes.

3.
Proc Natl Acad Sci U S A ; 120(34): e2305604120, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37585465

RESUMO

Electrochemical conversion of N2 into ammonia presents a sustainable pathway to produce hydrogen storage carrier but yet requires further advancement in electrocatalyst design and electrolyzer integration. This technology suffers from low selectivity and yield owing to the extremely strong N≡N bond and the exceptionally low solubility of N2 in aqueous systems. A high NH3 synthesis performance is restricted by the high activation energy of N≡N bond and the supply insufficiency of N2 to active sites. This paper describes the introduction of electron-rich Bi0 sites into Ag catalysts with a high-pressure electrolyzer that enables a dramatically enhanced Faradaic efficiency of 44.0% and yield of 28.43 µg cm-2 h-1 at 4.0 MPa. Combined with density functional theory results, in situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy demonstrates that N2 reduction reaction follows an associative mechanism, in which a high coverage of N-N bond and -NH2 intermediates suggest electron-rich Bi0 boosts sound activation of N2 molecules and low hydrogenation barrier. The proposed strategy of engineering electrochemical catalysts and devices provides powerful guidelines for achieving industrial-level green ammonia production.

4.
Proc Natl Acad Sci U S A ; 119(8)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165186

RESUMO

Solar water splitting is regarded as holding great potential for clean fuels production. However, the efficiency of charge separation/transfer of photocatalysts is still too low for industrial application. This paper describes the synthesis of a Pt-Au binary single-site loaded g-C3N4 nanosheet photocatalyst inspired by the concept of the dipole. The existent larger charge imbalance greatly enhanced the localized molecular dipoles over adjacent Pt-Au sites in contrast to the unary counterparts. The superposition of molecular dipoles then further strengthened the internal electric field and thus promoted the charge transportation dynamics. In the modeling photocatalytic hydrogen evolution, the optimal Pt-Au binary site photocatalysts (0.25% loading) showed 4.9- and 2.3-fold enhancement of performance compared with their Pt and Au single-site counterparts, respectively. In addition, the reaction barrier over the Pt-Au binary sites was lowered, promoting the hydrogen evolution process. This work offers a valuable strategy for improving photocatalytic charge transportation dynamics by constructing polynary single sites.

5.
Chem Soc Rev ; 52(14): 4644-4671, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37325843

RESUMO

Hydrogen is an essential energy carrier which will address the challenges posed by the energy crisis and climate change. Photoelectrochemical water splitting (PEC) is an important method for producing solar-powered hydrogen. The PEC tandem configuration harnesses sunlight as the exclusive energy source to drive both the hydrogen (HER) and oxygen evolution reactions (OER), simultaneously. Therefore, PEC tandem cells have been developed and gained tremendous interest in recent decades. This review describes the current status of the development of tandem cells for unbiased photoelectrochemical water splitting. The basic principles and prerequisites for constructing PEC tandem cells are introduced first. We then review various single photoelectrodes for use in water reduction or oxidation, and highlight the current state-of-the-art discoveries. Second, a close look into recent developments of PEC tandem cells in water splitting is provided. Finally, a perspective on the key challenges and prospects for the development of tandem cells for unbiased PEC water splitting are given.

6.
J Am Chem Soc ; 145(16): 8751-8756, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36943737

RESUMO

This study describes an instantaneously gas-induced dynamic transition of an industrial Cu/ZnO/Al2O3 catalyst. Cu/ZnO clusters become "alive" and lead to a promotion in reaction rate by almost one magnitude, in response to the variation of the reactant components. The promotional changes are functions of either CO2-to-CO or H2O-to-H2 ratio which determines the oxygen chemical potential thus drives Cu/ZnO clusters to undergo reconstruction and allows the maximum formation of Cu-Zn2+ sites for CH3OH synthesis.

7.
J Am Chem Soc ; 145(12): 6622-6627, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36939299

RESUMO

Copper (Cu) can efficiently catalyze the electrochemical CO2 reduction reaction (CO2RR) to produce value-added fuels and chemicals, among which methane (CH4) has drawn attention due to its high mass energy density. However, the linear scaling relationship between the adsorption energies of *CO and *CHxO on Cu restricts the selectivity toward CH4. Alloying a secondary metal in Cu provides a new freedom to break the linear scaling relationship, thus regulating the product distribution. This paper describes a controllable electrodeposition approach to alloying Cu with oxophilic metal (M) to steer the reaction pathway toward CH4. The optimized La5Cu95 electrocatalyst exhibits a CH4 Faradaic efficiency of 64.5%, with the partial current density of 193.5 mA cm-2. The introduction of oxophilic La could lower the energy barrier for *CO hydrogenation to *CHxO by strengthening the M-O bond, which would also promote the breakage of the C-O bond in *CH3O for the formation of CH4. This work provides a new avenue for the design of Cu-based electrocatalysts to achieve high selectivity in CO2RR through the modulation of the adsorption behaviors of key intermediates.

8.
J Hepatol ; 79(2): 394-402, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37086919

RESUMO

BACKGROUND & AIMS: Ischemia-reperfusion injury (IRI) has thus far been considered as an inevitable component of organ transplantation, compromising outcomes, and limiting organ availability. Ischemia-free organ transplantation is a novel approach designed to avoid IRI, with the potential to improve outcomes. METHODS: In this randomized-controlled clinical trial, recipients of livers from donors after brain death were randomly assigned to receive either an ischemia-free or a 'conventional' transplant. The primary endpoint was the incidence of early allograft dysfunction. Secondary endpoints included complications related to graft IRI. RESULTS: Out of 68 randomized patients, 65 underwent transplants and were included in the analysis. 32 patients received ischemia-free liver transplantation (IFLT), and 33 received conventional liver transplantation (CLT). Early allograft dysfunction occurred in two recipients (6%) randomized to IFLT and in eight (24%) randomized to CLT (difference -18%; 95% CI -35% to -1%; p = 0.044). Post-reperfusion syndrome occurred in three recipients (9%) randomized to IFLT and in 21 (64%) randomized to CLT (difference -54%; 95% CI -74% to -35%; p <0.001). Non-anastomotic biliary strictures diagnosed with protocol magnetic resonance cholangiopancreatography at 12 months were observed in two recipients (8%) randomized to IFLT and in nine (36%) randomized to CLT (difference, -28%; 95% CI -50% to -7%; p = 0.014). The comprehensive complication index at 1 year after transplantation was 30.48 (95% CI 23.25-37.71) in the IFLT group vs. 42.14 (95% CI 35.01-49.26) in the CLT group (difference -11.66; 95% CI -21.81 to -1.51; p = 0.025). CONCLUSIONS: Among patients with end-stage liver disease, IFLT significantly reduced complications related to IRI compared to a conventional approach. CLINICAL TRIAL REGISTRATION: chictr.org. ChiCTR1900021158. IMPACT AND IMPLICATIONS: Ischemia-reperfusion injury has thus far been considered as an inevitable event in organ transplantation, compromising outcomes and limiting organ availability. Ischemia-free liver transplantation is a novel approach of transplanting donor livers without interruption of blood supply. We showed that in patients with end-stage liver disease, ischemia-free liver transplantation, compared with a conventional approach, led to reduced complications related to ischemia-reperfusion injury in this randomized trial. This new approach is expected to change the current practice in organ transplantation, improving transplant outcomes, increasing organ utilization, while providing a clinical model to delineate the impact of organ injury on alloimmunity.


Assuntos
Doença Hepática Terminal , Transplante de Fígado , Traumatismo por Reperfusão , Humanos , Transplante de Fígado/efeitos adversos , Transplante de Fígado/métodos , Doença Hepática Terminal/complicações , Isquemia/patologia , Fígado/patologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/patologia , Perfusão/métodos , Preservação de Órgãos/métodos
9.
Angew Chem Int Ed Engl ; 62(19): e202300122, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36892274

RESUMO

Developing easily accessible descriptors is crucial but challenging to rationally design single-atom catalysts (SACs). This paper describes a simple and interpretable activity descriptor, which is easily obtained from the atomic databases. The defined descriptor proves to accelerate high-throughput screening of more than 700 graphene-based SACs without computations, universal for 3-5d transition metals and C/N/P/B/O-based coordination environments. Meanwhile, the analytical formula of this descriptor reveals the structure-activity relationship at the molecular orbital level. Using electrochemical nitrogen reduction as an example, this descriptor's guidance role has been experimentally validated by 13 previous reports as well as our synthesized 4 SACs. Orderly combining machine learning with physical insights, this work provides a new generalized strategy for low-cost high-throughput screening while comprehensive understanding the structure-mechanism-activity relationship.

10.
Angew Chem Int Ed Engl ; 62(34): e202301901, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37395563

RESUMO

Construction of a "net-zero-emission" system through CO2 hydrogenation to methanol with solar energy is an eco-friendly way to mitigate the greenhouse effect. Traditional CO2 hydrogenation demands centralized mass production for cost reduction with mass water electrolysis for hydrogen supply. To achieve continuous reaction with intermittent and fluctuating flow of H2 on a small-scale for distributed application scenarios, modulating the catalyst interface environment and chemical adsorption capacity to adapt fluctuating reaction conditions is highly desired. This paper describes a distributed clean CO2 utilization system in which the surface structure of catalysts is carefully regulated. The Ni catalyst with unsaturated electrons loaded on In2 O3 can reduce the dissociation energy of H2 to overcome the slow response of intermittent H2 supply, exhibiting a faster response (12 min) than bare oxide catalysts (42 min). Moreover, the introduction of Ni enhances the sensitivity of the catalyst to hydrogen, yielding a Ni/In2 O3 catalyst with a good performance at lower H2 concentrations with a 15 times adaptability for wider hydrogen fluctuation range than In2 O3 , greatly reducing the negative impact of unstable H2 supplies derived from renewable energies.

11.
Small ; 18(19): e2200073, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35257478

RESUMO

Atomically dispersed metal catalysts often exhibit high catalytic performances, but the metal loading density must be kept low to avoid the formation of metal nanoparticles, making it difficult to improve the overall activity. Diverse strategies based on creating more anchoring sites (ASs) have been adopted to elevate the loading density. One problem of such traditional methods is that the single atoms always gather together before the saturation of all ASs. Here, a chemical scissors strategy is developed by selectively removing unwanted metallic materials after excessive loading. Different from traditional ways, the chemical scissors strategy places more emphasis on the accurate matching between the strength of etching agent and the bond energies of metal-metal/metal-substrate, thus enabling a higher loading up to 2.02 wt% even on bare substrate without any pre-treatment (the bare substrate without any pre-treatment generally only has a few ASs for single atom loading). It can be inferred that by combining with other traditional methods which can create more ASs, the loading could be further increased by saturating ASs. When used for CH3 OH generation via photocatalytic CO2 reduction, the as-made single-atom catalyst exhibits impressive catalytic activity of 597.8 ± 144.6 µmol h-1 g-1 and selectivity of 81.3 ± 3.8%.


Assuntos
Nanopartículas Metálicas , Metais , Catálise , Metais/química , Fenômenos Físicos
12.
Chem Soc Rev ; 50(5): 3315-3354, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33491692

RESUMO

Propylene is an important building block for enormous petrochemicals including polypropylene, propylene oxide, acrylonitrile and so forth. Propane dehydrogenation (PDH) is an industrial technology for direct propylene production which has received extensive attention in recent years. With the development of dehydrogenation technologies, the efficient adsorption/activation of propane and subsequential desorption of propylene on the surfaces of heterogeneous catalysts remain scientifically challenging. This review describes recent advances in the fundamental understandings of the PDH process in terms of emerging technologies, catalyst development and new chemistry in regulating the catalyst structures and inhibiting the catalyst deactivation. The active sites, reaction pathways and deactivation mechanisms of PDH over metals and metal oxides as well as their dependent factors are also analysed and discussed, which is expected to enable efficient catalyst design for minimizing the reaction barriers and controlling the selectivity towards propylene. The challenges and perspectives of PDH over heterogeneous catalysts are also proposed for further development.

13.
Angew Chem Int Ed Engl ; 61(35): e202206758, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35760755

RESUMO

Understanding the structure-activity relationship of surface lattice oxygen is critical but challenging to design efficient redox catalysts. This paper describes data-driven redox activity descriptors on doped vanadium oxides combining density functional theory and interpretable machine learning. We corroborate that the p-band center is the most crucial feature for the activity. Besides, some features from the coordination environment, including unoccupied d-band center, s- and d-band fillings, also play important roles in tuning the oxygen activity. Further analysis reveals that data-driven descriptors could decode more information about electron transfer during the redox process. Based on the descriptors, we report that atomic Re- and W-doping could inhibit over-oxidation in the chemical looping oxidative dehydrogenation of propane, which is verified by subsequent experiments and calculations. This work sheds light on the structure-activity relationship of lattice oxygen for the rational design of redox catalysts.

14.
Angew Chem Int Ed Engl ; 61(2): e202109027, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34676955

RESUMO

Cobalt-copper (CoCu) catalysts have industrial potential in CO/CO2 hydrogenation reactions, and CoCu alloy has been elucidated as a major active phase during reactions. However, due to elemental surface segregation and dealloying phenomena, the actual surface morphology of CoCu alloy is still unclear. Combining theory and experiment, the dual effect of surface segregation and varied CO coverage over the CoCu(111) surface on the reactivity in CO2 hydrogenation reactions is explored. The relationship between C-O bond scission and further hydrogenation of intermediate *CH2 O was discovered to be a key step to promote ethanol production. The theoretical investigation suggests that moderate Co segregation provides a suitable surface Co ensemble with lateral interactions of co-adsorbed *CO, leading to promoted selectivity to ethanol, in agreement with theory-inspired experiments.

15.
Angew Chem Int Ed Engl ; 61(35): e202201453, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35849100

RESUMO

The synergy between metals and metal oxides can effectively improve the heterogeneous catalytic process. This paper describes the intrinsic effect of Pt modification over GaOx (Pt-GaOx ) on propane dehydrogenation. The presence of Pt promotes H2 dissociation and surface coverage of hydrogen species, which is beneficial for the activation of C-H in propane. With excessive Pt, Gaδ+ can be further reduced to form Pt-Ga alloy with less surface hydrogen species. Consequently, the relative propylene formation rate between Pt-GaOx and the summed contribution of individual Pt and GaOx increases linearly with the content of hydrogen species. Optimally, the relative propylene formation rate of Pt-GaOx with 0.03 wt % Pt exceeds 25 % of the summed contribution of individual components.

16.
Angew Chem Int Ed Engl ; 61(22): e202201913, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35289049

RESUMO

The electrochemical CO2 reduction (CO2 ER) to multi-carbon chemical feedstocks over Cu-based catalysts is of considerable attraction but suffers with the ambiguous nature of active sites, which hinder the rational design of catalysts and large-scale industrialization. This paper describes a large-scale simulation to obtain realistic CuZn nanoparticle models and the atom-level structure of active sites for C2+ products on CuZn catalysts in CO2 ER, combining neural network based global optimization and density functional theory calculations. Upon analyzing over 2000 surface sites through high throughput tests based on NN potential, two kinds of active sites are identified, balanced Cu-Zn sites and Zn-heavy Cu-Zn sites, both facilitating C-C coupling, which are verified by subsequent calculational and experimental investigations. This work provides a paradigm for the design of high-performance Cu-based catalysts and may offer a general strategy to identify accurately the atomic structures of active sites in complex catalytic systems.

17.
Chem Soc Rev ; 49(22): 8156-8178, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-32870221

RESUMO

Single-atom catalysts (SACs) with atomically dispersed metals have emerged as a new class of heterogeneous catalysts and have attracted considerable interest because they offer 100% metal atom utilization and show excellent catalytic behavior compared with traditionally supported nano-particles. However, it is challenging to explore the active sites and catalytic mechanisms of SACs through common characterization methods due to the isolated single atoms. Therefore, employing theoretical calculations to determine the nature of SACs' active sites and the reaction mechanisms is particularly meaningful. This paper describes the nature of SACs by summarizing the diverse applications and properties of SACs, which starts from computational simulation on a couple of important applications of SACs. Then the distinctive and fundamental properties of SACs are discussed. At last, the challenges and future perspectives of computational calculations for SACs are outlined.

18.
Chem Soc Rev ; 49(10): 2937-3004, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32407432

RESUMO

Catalytic conversion of CO2 to produce fuels and chemicals is attractive in prospect because it provides an alternative to fossil feedstocks and the benefit of converting and cycling the greenhouse gas CO2 on a large scale. In today's technology, CO2 is converted into hydrocarbon fuels in Fischer-Tropsch synthesis via the water gas shift reaction, but processes for direct conversion of CO2 to fuels and chemicals such as methane, methanol, and C2+ hydrocarbons or syngas are still far from large-scale applications because of processing challenges that may be best addressed by the discovery of improved catalysts-those with enhanced activity, selectivity, and stability. Core-shell structured catalysts are a relatively new class of nanomaterials that allow a controlled integration of the functions of complementary materials with optimised compositions and morphologies. For CO2 conversion, core-shell catalysts can provide distinctive advantages by addressing challenges such as catalyst sintering and activity loss in CO2 reforming processes, insufficient product selectivity in thermocatalytic CO2 hydrogenation, and low efficiency and selectivity in photocatalytic and electrocatalytic CO2 hydrogenation. In the preceding decade, substantial progress has been made in the synthesis, characterization, and evaluation of core-shell catalysts for such potential applications. Nonetheless, challenges remain in the discovery of inexpensive, robust, regenerable catalysts in this class. This review provides an in-depth assessment of these materials for the thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2 into synthesis gas and valuable hydrocarbons.

19.
Angew Chem Int Ed Engl ; 60(28): 15344-15347, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33904226

RESUMO

Cu-based electrocatalysts facilitate CO2 electrochemical reduction (CO2 ER) to produce multi-carbon products. However, the roles of Cu0 and Cu+ and the mechanistic understanding remain elusive. This paper describes the controllable construction of Cu0 -Cu+ sites derived from the well-dispersed cupric oxide particles supported on copper phyllosilicate lamella to enhance CO2 ER performance. 20 % Cu/CuSiO3 shows the superior CO2 ER performance with 51.8 % C2 H4 Faraday efficiency at -1.1 V vs reversible hydrogen electrode during the 6 hour test. In situ attenuated total reflection infrared spectra and density functional theory (DFT) calculations were employed to elucidate the reaction mechanism. The enhancement in CO2 ER activity is mainly attributed to the synergism of Cu0 -Cu+ pairs: Cu0 activates CO2 and facilitates the following electron transfers; Cu+ strengthens *CO adsorption to further boost C-C coupling. We provide a strategy to rationally design Cu-based catalysts with viable valence states to boost CO2 ER.

20.
Angew Chem Int Ed Engl ; 60(8): 4034-4037, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33185337

RESUMO

Silicon is a promising photocathode material in photoelectrochemical water splitting for hydrogen production, but it is primarily limited by photocorrosion in aqueous electrolytes. As an extensively used protective material, crystalline TiO2 could protect Si photoelectrode against corrosion. However, a large number of grain boundaries (GBs) in polycrystalline TiO2 would induce excessive recombination centers, impeding the carrier transport. This paper describes the introduction of oxygen vacancies (Ovac ) with controllable spatial distribution for GBs to promote carrier transport. Two kinds of Ovac distribution, Ovac along GBs and Ovac inside grains, are compared, where the latter one is demonstrated to facilitate carrier transport owing to the formation of tunneling paths across GBs. Consequently, a simple p-Si/TiO2 /Pt heterojunction photocathode with controllable Ovac distribution in TiO2 shows a +400 mV onset potential shift and yields an applied bias photon-to-current efficiency of 5.9 %, which is the best efficiency reported among silicon photocathodes except for silicon homojunction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA