Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 88: 595-605, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30890432

RESUMO

Lipid droplets (LDs) are increasingly being recognized as important immune modulators in mammals, in additional to their function of lipid ester deposition. However, the role of LDs in fish immunity remains poorly understood. In this study, the function of LDs in the innate immune response of Ctenopharyngodon idella kidney (CIK) cells, which are the equivalent of myeloid cells in vertebrates, was investigated. LD number and TG content significantly increased in the CIK cells following exposure to lipopolysaccharide (LPS), peptidoglycan (PGN), and polyriboinosinic-polyribocytidylic acid (Poly [I: C]) for 24 h, accompanied by increases in the relative expression of several innate immune genes. However, fatty acid compositions of the triglycerides were not changed after treatment with these three pathogenic mimics. LPS, PGN, and Poly (I: C) did not alter the relative expressions of lipogenic (FAS, SCD, and DGAT) and lipid catabolic (PPARα, ATGL, and CPT-1) genes. However, these treatments did increase the mRNA levels of lipid transportation genes (FATP/CD36, ACSL1, and ACSL4), and also decreased the non-esterified fatty acid level in the medium. To further explore the role of LDs in the immune response, CIK cells were incubated with different concentrations (0, 100, 200, 300, 400, 500 µM) of exogenous lipid mix (LM; oleic acid [OA]:linoleic acid [LA]:linolenic acid [LNA] = 2:1:1), and were then transferred to a lipid-free medium and incubated for 24 h. LD size and number increased with the increase in lipid levels, and this was accompanied by increased expression of innate immune genes, including MyD88, IRF3, and IL-1ß, which were expressed at their highest levels in 300 µM exogenous lipid mix. Interestingly, after incubating with different fatty acids (LM, OA, LA, LNA, arachidonic acid [ARA], and docosahexaenoic acid [DHA]; 300 µM), ARA and DHA were more potent in inducing LD formation and innate immune gene expression in the CIK cells. Finally, atglistatin, an ATGL inhibitor, effectively attenuated the expression of most genes upregulated by ARA or DHA, suggesting that lipolysis may be involved in the regulation of immune genes at the transcriptional level. Overall, the findings of this study demonstrate that LDs are functional organelles that could act as modulators in the innate immune response of CIK cells. Additionally, long-chain polyunsaturated fatty acid enriched LDs play a unique role in regulating this process.


Assuntos
Carpas/imunologia , Imunidade Inata/genética , Rim/imunologia , Gotículas Lipídicas/imunologia , Animais , Carpas/genética , Linhagem Celular , Meios de Cultura , Ácidos Graxos/química , Expressão Gênica , Rim/citologia , Metabolismo dos Lipídeos , Lipopolissacarídeos/farmacologia , Peptidoglicano/farmacologia , Poli I-C/farmacologia , Triglicerídeos/química
2.
Fish Physiol Biochem ; 45(2): 631-642, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30460475

RESUMO

Feeding faba beans (Vicia faba L.) to grass carp (Ctenopharyngodon idellus) increases muscle compactness but decreases growth and motility. The lipid metabolism of grass carp was examined to assess potential effects of feeding faba beans on physiological properties using a total of 180 fish. The treatment group was fed faba beans for 120 days and a commercial diet for another 30 days. The control group received a commercial diet for 150 days. Fish were sampled every month. Weight gain was significantly lower in the treatment group than in the control. Hardness, springiness, chewiness, cohesiveness, and gumminess of the dorsal muscle increased significantly with the feeding faba beans from 30 to 120 days, which was not reversed by the subsequent feeding of commercial diet. Fat accumulation increased significantly in the treatment group as suggested by the condition factor, viscera index, hepatopancreatic index, and intraperitoneal fat index (IPFI), hepatopancreas, and muscle fat content but was not affected by subsequent feeding with the commercial diet. Serum triglyceride and total cholesterol levels were significantly reduced in the experimental diet group. In the hepatopancreas and intraperitoneal fat IPF, monounsaturated fatty acids showed significantly higher content in faba bean feeding fish, whereas polyunsaturated fatty acid content showed the reversed pattern. In the hepatopancreas, the activities of the lipogenic enzymes malate dehydrogenase and glucose 6-phosphate dehydrogenase were higher in the treatment than in the control group. Moreover, the treatment group showed lower mRNA levels of carnitine palmitoyltransferase-1. Overall, our results clearly demonstrate increasing lipid accumulation in the viscera of faba bean-fed grass carp.


Assuntos
Ração Animal/análise , Carpas/fisiologia , Dieta/veterinária , Metabolismo dos Lipídeos/fisiologia , Vicia faba , Fenômenos Fisiológicos da Nutrição Animal , Animais , Distribuição Aleatória
3.
Biochemistry (Mosc) ; 83(6): 766-777, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30195333

RESUMO

MicroRNAs (miRNA) play a pivotal role in regulating a broad range of biological processes, acting by cleaving mRNAs or by translational repression. However, the miRNAs from skin of Andrias davidianus have not been reported. In this study, a small-RNA cDNA library was constructed and sequenced from skin of A. davidianus. A total of 513 conserved miRNAs belonging to 174 families were identified. The remaining 108 miRNAs we identified were novel and likely to be skin tissue-specific but were expressed at low levels. The presence of randomly selected 15 miRNAs identified and their expression in eight different tissues from A. davidianus were validated by stem-loop qRT-PCR. For better understanding the functions of miRNAs, 129,791 predicated target genes were analyzed by GO and their pathways illustrated by KEGG pathway analyses. The results show that these identified miRNAs from A. davidianus skin are involved in a broad range of physiological functions including metabolism, growth, development, and immune responses. This study exhaustively identifies miRNAs and their target genes, which will ultimately pave the way for understanding their role in skin of A. davidianus and other amphibians. Further studies are necessary to better understand miRNA-mediated gene regulation.


Assuntos
MicroRNAs/metabolismo , Pele/metabolismo , Urodelos/genética , Animais , China , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Análise de Sequência de DNA , Urodelos/metabolismo
4.
Front Physiol ; 14: 1147001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969581

RESUMO

This study examined the role of intestinal microbiota in berberine (BBR)-mediated glucose (GLU) metabolism regulation in largemouth bass. Four groups of largemouth bass (133.7 ± 1.43 g) were fed with control diet, BBR (1 g/kg feed) supplemented diet, antibiotic (ATB, 0.9 g/kg feed) supplemented diet and BBR + ATB (1g/kg feed +0.9 g/kg feed) supplemented diet for 50 days. BBR improved growth, decreased the hepatosomatic and visceral weight indices, significantly downregulated the serum total cholesterol and GLU levels, and significantly upregulated the serum total bile acid (TBA) levels. The hepatic hexokinase, pyruvate kinase, GLU-6-phosphatase and glutamic oxalacetic transaminase activities in the largemouth bass were significantly upregulated when compared with those in the control group. The ATB group exhibited significantly decreased final bodyweight, weight gain, specific growth rates and serum TBA levels, and significantly increased hepatosomatic and viscera weight indices, hepatic phosphoenolpyruvate carboxykinase, phosphofructokinase, and pyruvate carboxylase activities, and serum GLU levels. Meanwhile, the BBR + ATB group exhibited significantly decreased final weight, weight gain and specific growth rates, and TBA levels and significantly increased hepatosomatic and viscera weight indices and GLU levels. High-throughput sequencing revealed that compared with those in the control group, the Chao one index and Bacteroidota contents were significantly upregulated and the Firmicutes contents were downregulated in the BBR group. Additionally, the Shannon and Simpson indices and Bacteroidota levels were significantly downregulated, whereas the Firmicutes levels were significantly upregulated in ATB and BBR + ATB groups. The results of in-vitro culture of intestinal microbiota revealed that BBR significantly increased the number of culturable bacteria. The characteristic bacterium in the BBR group was Enterobacter cloacae. Biochemical identification analysis revealed that E. cloacae metabolizes carbohydrates. The size and degree of vacuolation of the hepatocytes in the control, ATB, and ATB + BBR groups were higher than those in the BBR group. Additionally, BBR decreased the number of nuclei at the edges and the distribution of lipids in the liver tissue. Collectively, BBR reduced the blood GLU level and improved GLU metabolism in largemouth bass. Comparative analysis of experiments with ATB and BBR supplementation revealed that BBR regulated GLU metabolism in largemouth bass by modulating intestinal microbiota.

5.
Microorganisms ; 9(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34683490

RESUMO

Aquaculture is crucial for achieving the FAO's goal of a world without hunger and malnutrition. Recently, biofilm substratum has been proposed as an effective means to control waste pollution caused by excessive nutrient inputs from aquaculture, but key bacterial communities involved in the remediation remain unclear. Here we reported a freshwater mesocosm study where the addition of biofilm substrata with external carbon effectively controlled the total ammonia nitrogen and improved fish growth. 16S rRNA study and Weighted UniFrac analysis revealed that bacterial compositions were significantly different (999 permutations, p-value < 0.01) between the biofilm-substrata-added and biofilm-substrata-free systems. Planctomycetes were found, as key bacteria benefited from the biofilm substrata addition and exerted the major function of ammonia nitrogen control. Our study demonstrated that the addition of biofilm substrata and an external carbon source favored fish growth and improved the aquaculture environment by the formation of a unique bacteria community.

6.
Front Physiol ; 11: 391, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32395106

RESUMO

In this study, we aimed to explore the effects of faba bean (Vicia faba L.) on the energy metabolism of grass carp (Ctenopharyngodon idellus). A total of 180 fish (∼2900 g) were randomly assigned to six tanks (2.5 × 2.5 × 1.2 m; 30 individuals per tank) and fed either faba bean (Vicia faba L.) or a commercial diet for 120 days (3% body weight, twice per day). The results showed that faba bean-fed grass carp (FBFG) had significantly lower growth and higher fat accumulation in the mesenteric adipose tissue and hepatopancreas than commercial diet-fed grass carp (CDFG). Compared with CDFG, FBFG exhibited no significant difference in proximate composition of the muscle; however, an obvious decrease in muscle fiber size and significantly higher hardness, chewiness, and gumminess were observed. Transcriptome results showed that a total of 197 genes were differentially regulated in the dorsal muscle. Down-regulated genes included four genes annotated with myocyte development and 12 transcripts annotated with components of myofibrils. In addition, the FBFG group exhibited significantly lower expression of genes associated with oxygen transport, the mitochondrial respiratory chain, and creatine metabolism, suggesting reduced energy availability in the muscle of the FBFG. Moreover, using western-blotting and enzyme assays, we found decreased protein levels in the mitochondrial electron transport respiratory chain and creatine metabolism activities, as well as increased expression of autophagy marker protein levels, in the muscle of FBFG. Overall, our results suggest that an abnormal energy distribution may exist in grass carps after feeding with faba bean, which is reflected by a mass of fat deposition in the adipose tissue and hepatopancreas and subdued metabolic activity in the muscle.

7.
Artigo em Inglês | MEDLINE | ID: mdl-32659607

RESUMO

Fat accumulation in the mesenteric adipose tissue is a serious problem in grass carp (Ctenopharyngodon idella) culture. Lipid droplet-related proteins (LDRPs) are involved in the formation, degradation, and biological functions of lipid droplets. In this study, we aimed to provide reference proteomics data to study lipid droplet regulation in fish. We isolated LDRPs from the mesenteric adipose tissue of grass carp (1-year-old) after normal feeding and 7 days of starvation, and identified and analysed them using isobaric tags for relative and absolute quantitation (iTRAQ) technology. Short-term starvation had no significant effect on the body weight, condition factor, visceral index, hepatopancreas index, intraperitoneal fat index, adipose tissue triglyceride content, and adipocyte size of grass carp. Nine hundred and fifty proteins were identified and annotated using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases; they are involved in a variety of metabolic and signalling pathways, including amino acid, lipid, and carbohydrate metabolism, and the PI3K-Akt signalling pathway. There were 296 differentially expressed proteins (DEPs), with 143 up-regulated and 153 down-regulated proteins. Three proteins involved in triglyceride and fatty acid syntheses and two proteins involved in autophagy were up-regulated, and six proteins involved in lipid catabolism were down-regulated. These results indicate that under short-term starvation, lipid droplets in the adipose tissue of grass carp may maintain their shape by promoting fat production and inhibiting lipolysis, and autophagy may be one of the main strategies for coping with short-term energy deprivation.


Assuntos
Tecido Adiposo/metabolismo , Ração Animal/análise , Carpas/metabolismo , Proteínas de Peixes/metabolismo , Gotículas Lipídicas/metabolismo , Proteoma/análise , Inanição , Animais , Carpas/crescimento & desenvolvimento , Proteoma/metabolismo
8.
Gene ; 685: 32-41, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30393189

RESUMO

Smad4 is the key regulator in the transforming growth factor ß1 (TGF-ß1)/Smads signal pathway, and is also the crux of the regulation of type I collagen expression in mammals. In fish, however, the relationship between Smad4 and type I collagen is still unknown. Given the widely accepted importance of type I collagen in fish muscle hardness, we seek to explore this issue by analyzing the expressions of the TGF-ß1/Smads pathway molecules and type I collagen in the muscle of crisp grass carp fed with faba bean, which shows increased muscle hardness. The study found that (1) in the process of feeding the grass carp with faba bean, the mRNA and protein expressions of TGF-ß1, Smad2 and Smad4 all increased along with the increase of type I collagen expression (Col1α1 and Col1α2); (2) one day after the injection of Smad4 over-expression vector, both mRNA and protein expressions of Col1α1 and Col1α2 significantly increased, reaching the maximum on the 2nd and 5th day, respectively; (3) one day after the injection of Smad4 RNAi interference vector, the mRNA and protein expressions of Col1α1 and Col1α2 decreased, reaching the minimum on the 5th day. These results revealed that Smad4 is the major regulator of type I collagen in the muscle of grass carp fed with faba bean. This study would provide an important mechanistic basis for nutritional regulation of type I collagen in the muscle of fish.


Assuntos
Carpas/genética , Carpas/metabolismo , Colágeno Tipo I/genética , Regulação da Expressão Gênica , Músculos/metabolismo , Proteína Smad4/metabolismo , Ração Animal , Animais , Biomarcadores , Colágeno Tipo I/metabolismo , RNA Mensageiro/genética , Transdução de Sinais , Vicia faba
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA