Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 231(Pt 1): 116072, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37150389

RESUMO

Route topography is an important test boundary of real driving emission (RDE) tests. However, the RDE test boundaries, such as atmospheric environment, driver behavior, route topography, and traffic congestion, are random, uncertain, and completely coupled. It is difficult to know to what extent route topography can determine on-road emissions, especially in a region with hilly topography. In this regard, the neural network predictor importance algorithms were proposed to measure the importance of the route topography test boundary. Based on tens of thousands of data window samples from the RDE tests in Chongqing, factor analysis was performed to reduce the data dimensionality and eliminate information overlap, and neural network models were established to predict pollutant emissions and calculate the relative importance of input variables. The results show that route topography is comparable to trip dynamics for on-road emissions but the importance of the route topography test boundary is not fully appreciated in the existing RDE regulation, making mountain cities suffer from severe vehicle emissions that are not effectively controlled.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Emissões de Veículos/análise , Poluentes Atmosféricos/análise , Cidades , Poluentes Ambientais/análise , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA