Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 697
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(37): 11722-11729, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39248378

RESUMO

Graphene quantum dots (GQDs) commonly suffer from the fluorescence problem of aggregation-caused quenching under high-concentration loading or in the solid state, which seriously hinders the application. Here we report a type of GQDs with red aggregation-induced enhanced emission (AIEE). It is confirmed that the aggregation state of the AIEE GQDs is a J-aggregate. The GQDs/poly(methyl methacrylate) film presented a photoluminescence quantum yield as high as 60.81%, and the record-high performance of luminescent solar concentrators (LSCs) was achieved. The power conversion efficiency (ηPCE) is up to 8.35% and the external optical efficiency (ηext) is ∼8.99% for the GQD-based LSCs (45 mW/cm2). Even under one sun illumination (100 mW/cm2), the corresponding ηPCE and ηext values are 3.12% and 4.52%, respectively. The internal photon efficiency (ηint) of an LSC device is about 5.02%. The synthesis of AIEE GQDs bridges the research gap in the emission mechanism of AIEE in GQDs.

2.
Nano Lett ; 24(26): 7919-7926, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38836594

RESUMO

Schottky diode, capable of ultrahigh frequency operation, plays a critical role in modern communication systems. To develop cost-effective and widely applicable high-speed diodes, researchers have delved into thin-film semiconductors. However, a performance gap persists between thin-film diodes and conventional bulk semiconductor-based ones. Featuring high mobility and low permittivity, indium-tin-oxide has emerged to bridge this gap. Nevertheless, due to its high carrier concentration, indium-tin-oxide has predominantly been utilized as electrode rather than semiconductor. In this study, a remarkable quantum confinement induced dedoping phenomenon was discovered during the aggressive indium-tin-oxide thickness downscaling. By leveraging such a feature to change indium-tin-oxide from metal-like into semiconductor-like, in conjunction with a novel heterogeneous lateral design facilitated by an innovative digital etch, we demonstrated an indium-tin-oxide Schottky diode with a cutoff frequency reaching terahertz band. By pushing the boundaries of thin-film Schottky diodes, our research offers a potential enabler for future fifth-generation/sixth-generation networks, empowering diverse applications.

3.
Small ; 20(2): e2305933, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37661362

RESUMO

Carbon dots (CDs) are a newly discovered type of fluorescent material that has gained significant attention due to their exceptional optical properties, biocompatibility, and other remarkable characteristics. However, single CDs have some drawbacks such as self-quenching, low quantum yield (QY), and poor stability. To address these issues, researchers have turned to organosilicon, which is known for its green, economical, and abundant properties. Organosilicon is widely used in various fields including optics, electronics, and biology. By utilizing organosilicon as a synthetic precursor, the biocompatibility, QY, and resistance to self-quenching of CDs can be improved. Meanwhile, the combination of organosilicon with CDs enables the functionalization of CDs, which significantly expands their original application scenarios. This paper comprehensively analyzes organosilicon in two main categories: precursors for CD synthesis and matrix materials for compounding with CDs. The role of organosilicon in these categories is thoroughly reviewed. In addition, the paper presents various applications of organosilicon compounded CDs, including detection and sensing, anti-counterfeiting, optoelectronic applications, and biological applications. Finally, the paper briefly discusses current development challenges and future directions in the field.

4.
Small ; 20(23): e2308457, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38126697

RESUMO

Hour-level persistent room temperature phosphorescence (RTP) phenomena based on multi-confinement carbon dots (CDs) are reported. The CDs-based system reported here (named Si-CDs@B2O3) can be efficiently synthesized by a simple pyrolysis method compared to the established persistent RTP systems. The binding modes of CDs, silica (SiO2), and boron oxide (B2O3) are deduced from a series of characterizations including XRD, FT-IR, and TEM characterization. Further studies show that the formation of covalent bonds between B2O3, SiO2, and CDs play a key role in activating the persistent RTP and preventing its quenching. This is a rare example of a persistent RTP system that exhibits hourly persistent RTP under environmental conditions. Finally, the applications of Si-CDs@B2O3 are demonstrated for anti-counterfeiting, long-duration phosphorescence imaging, and fingerprinting. This synthetic strategy is expected to provide strong technical support for the preparation of persistent RTP CDs and pave the way for the synthesis of persistent RTP CDs in the future.

5.
Small ; 20(31): e2400107, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38461525

RESUMO

Carbon dots (CDs), a class of carbon-based nanomaterials with dimensions less than 10 nm, have attracted significant interest since their discovery. They possess numerous excellent properties, such as tunability of photoluminescence, environmental friendliness, low cost, and multifunctional applications. Recently, a large number of reviews have emerged that provide overviews of their synthesis, properties, applications, and their composite functionalization. The application of CDs in the field of optoelectronics has also seen unprecedented development due to their excellent optical properties, but reviews of them in this field are relatively rare. With the idea of deepening and broadening the understanding of the applications of CDs in the field of optoelectronics, this review for the first time provides a detailed summary of their applications in the field of luminescent solar concentrators (LSCs), light-emitting diodes (LEDs), solar cells, and photodetectors. In addition, the definition, categories, and synthesis methods of CDs are briefly introduced. It is hoped that this review can bring scholars more and deeper understanding in the field of optoelectronic applications of CDs to further promote the practical applications of CDs.

6.
Small ; : e2406348, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212638

RESUMO

Recently, single-band ratiometric (SBR) thermometry has emerged as an innovative approach to traditional fluorescence thermometry, overcoming uncertainties associated with emission spectrum overlap or scattering while maintaining high spatial resolution and remote monitoring. This paper presents a novel Cs2NaEuCl6 perovskite prepared through a slow-cooling solution method. Additionally, it proposes a temperature sensor model that relies on the thermal quenching of charge-transfer state absorption. Mechanical studies highlight the role of lattice positive thermal expansion in affecting Eu3+ emission. Conversely, a significant emission enhancement is observed upon excitation corresponding to both the ground state and excited state absorption. The distinct luminescent behavior of this Eu3+-activated halide perovskite model makes it suitable for developing a highly sensitive SBR-type sensor with a relative sensitivity (Sr) exceeding 1.5% K-1 and temperature resolution (𝛿T) below 1 K at room temperature. Furthermore, it demonstrates the thermal stability during multiple heating-cooling cycles. Finally, the practical applicability of the proposed SBR model is demonstrated by employing a self-manufactured film sensor that enables precise real-time temperature detection for electronic components. The work is regarded as a significant stride toward the development of cutting-edge and exquisitely sensitive thermometers based on lanthanide-based halide double perovskites.

7.
Small ; : e2404407, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39344551

RESUMO

Adsorption is one of the most widely researched and highly effective methods for mitigating the environmental threat posed by recalcitrant dyes in aqueous solutions. This paper presents a solvent-free synthesis method for the rapid and large-scale production of nitrogen (N) and phosphorus (P) co-doped carbon dots (N, P-CDs) which possess specific surface states and outstanding dye adsorption properties. Compared to the undoped CDs, the N, P-CDs not only exhibit a higher yield of solid-state luminescence but also endow them with the efficient adsorption and removal of Congo red (CR) from water. Due to the synergistic effects of π-π stacking, hydrogen bonding and electrostatic attraction, the N, P-CDs exhibit an ultra-high adsorption capacity (3118.87 mg g-1) and a removal efficiency (97.4%, at 500 mg L-1) for CR, and also display excellent selective adsorption in both single-dye and dual-dye systems. This method offers a rational strategy for synthesizing novel CDs-based adsorbents for CR, which provides a demonstration for future dye adsorption studies and practical wastewater treatment applications of CDs.

8.
Small ; 20(5): e2304673, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37731094

RESUMO

The aggregation-caused quenching has always limited the high concentration and solid-state applications of carbon nanodots. While the aggregation-induced emission effect, dominated by intramolecular motion, may be an effective means to solve this problem. Here, hydrophobic solid-state red-light carbon nanodots (M-CDs) with 95% yield are synthesized by a one-step hydrothermal method using 2,2'-dithiodibenzoic acid as the carbon source and manganese acetate as the dopant source. The disulfide bond of 2,2'-dithiodibenzoic acid serves as the symmetry center of molecular rotation and Mn catalyzes the synthesis of M-CDs, which promotes the formation of the central graphitic carbon structure. The M-CDs/agar hydrogel composites can achieve fluorescence transition behavior because of the special fluorescence transition properties of M-CDs. When this composite hydrogel is placed in water, water molecules contact with M-CDs through the network structure of the hydrogels, making the aggregated hydrogels of M-CDs fluorescence orange-red under 365 nm excitation. While in dimethyl sulfoxide, water molecules in the hydrogels network are replaced and the M-CDs fluoresce blue when dispersed, providing a potential application in information encryption. In addition, high-performance monochromatic light-emitting diode (LED) devices are prepared by compounding M-CDs with epoxy resin and coating them on 365 nm LED chips.

9.
New Phytol ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360441

RESUMO

Carbon isotope discrimination (∆) in leaf biomass (∆BL) and tree rings (∆TR) provides important proxies for plant responses to climate change, specifically in terms of intrinsic water-use efficiency (iWUE). However, the nonphotosynthetic 12C/13C fractionation in plant tissues has rarely been quantified and its influence on iWUE estimation remains uncertain. We derived a comprehensive, ∆ based iWUE model (iWUEcom) which includes nonphotosynthetic fractionations (d) and characterized tissue-specific d-values based on global compilations of data of ∆BL, ∆TR and real-time ∆ in leaf photosynthesis (∆online). iWUEcom was further validated with independent datasets. ∆BL was larger than ∆online by 2.53‰, while ∆BL and ∆TR showed a mean offset of 2.76‰, indicating that ∆TR is quantitatively very similar to ∆online. Applying the tissue-specific d-values (dBL = 2.5‰, dTR = 0‰), iWUE estimated from ∆BL aligned well with those estimated from ∆TR or gas exchange. ∆BL and ∆TR showed a consistent iWUE trend with an average CO2 sensitivity of 0.15 ppm ppm-1 during 1975-2015. Accounting for nonphotosynthetic fractionations improves the estimation of iWUE based on isotope records in leaf biomass and tree rings, which is ultimate for inferring changes in carbon and water cycles under historical and future climate.

10.
New Phytol ; 241(4): 1435-1446, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37997699

RESUMO

Our ability to predict temperature responses of leaf respiration in light and darkness (RL and RDk ) is essential to models of global carbon dynamics. While many models rely on constant thermal sensitivity (characterized by Q10 ), uncertainty remains as to whether Q10 of RL and RDk are actually similar. We measured short-term temperature responses of RL and RDk in immature and mature leaves of two evergreen tree species, Castanopsis carlesii and Ormosia henry in an open field. RL was estimated by the Kok method, the Yin method and a newly developed Kok-iterCc method. When estimated by the Yin and Kok-iterCc methods, RL and RDk had similar Q10 (c. 2.5). The Kok method overestimated both Q10 and the light inhibition of respiration. RL /RDk was not affected by leaf temperature. Acclimation of respiration in summer was associated with a decline in basal respiration but not in Q10 in both species, which was related to changes in leaf nitrogen content between seasons. Q10 of RL and RDk in mature leaves were 40% higher than in immature leaves. Our results suggest similar Q10 values can be used to model RL and RDk while leaf development-associated changes in Q10 require special consideration in future respiration models.


Assuntos
Fotossíntese , Respiração , Temperatura , Escuridão , Estações do Ano , Folhas de Planta
11.
Plant Physiol ; 191(4): 2204-2217, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36517877

RESUMO

Evaluating leaf day respiration rate (RL), which is believed to differ from that in the dark (RDk), is essential for predicting global carbon cycles under climate change. Several studies have suggested that atmospheric CO2 impacts RL. However, the magnitude of such an impact and associated mechanisms remain uncertain. To explore the CO2 effect on RL, wheat (Triticum aestivum) and sunflower (Helianthus annuus) plants were grown under ambient (410 ppm) and elevated (820 ppm) CO2 mole fraction ([CO2]). RL was estimated from combined gas exchange and chlorophyll fluorescence measurements using the Kok method, the Kok-Phi method, and a revised Kok method (Kok-Cc method). We found that elevated growth [CO2] led to an 8.4% reduction in RL and a 16.2% reduction in RDk in both species, in parallel to decreased leaf N and chlorophyll contents at elevated growth [CO2]. We also looked at short-term CO2 effects during gas exchange experiments. Increased RL or RL/RDk at elevated measurement [CO2] were found using the Kok and Kok-Phi methods, but not with the Kok-Cc method. This discrepancy was attributed to the unaccounted changes in Cc in the former methods. We found that the Kok and Kok-Phi methods underestimate RL and overestimate the inhibition of respiration under low irradiance conditions of the Kok curve, and the inhibition of RL was only 6%, representing 26% of the apparent Kok effect. We found no significant long-term CO2 effect on RL/RDk, originating from a concurrent reduction in RL and RDk at elevated growth [CO2], and likely mediated by acclimation of nitrogen metabolism.


Assuntos
Dióxido de Carbono , Fotossíntese , Fotossíntese/fisiologia , Dióxido de Carbono/metabolismo , Folhas de Planta/metabolismo , Clorofila/metabolismo , Respiração
12.
Plant Cell Environ ; 47(6): 2274-2287, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38488789

RESUMO

The 18O enrichment (Δ18O) of cellulose (Δ18OCel) is recognized as a unique archive of past climate and plant function. However, there is still uncertainty regarding the proportion of oxygen in cellulose (pex) that exchanges post-photosynthetically with medium water of cellulose synthesis. Particularly, recent research with C3 grasses demonstrated that the Δ18O of leaf sucrose (Δ18OSuc, the parent substrate for cellulose synthesis) can be much higher than predicted from daytime Δ18O of leaf water (Δ18OLW), which could alter conclusions on photosynthetic versus post-photosynthetic effects on Δ18OCel via pex. Here, we assessed pex in leaves of perennial ryegrass (Lolium perenne) grown at different atmospheric relative humidity (RH) and CO2 levels, by determinations of Δ18OCel in leaves, Δ18OLGDZW (the Δ18O of water in the leaf growth-and-differentiation zone) and both Δ18OSuc and Δ18OLW (adjusted for εbio, the biosynthetic fractionation between water and carbohydrates) as alternative proxies for the substrate for cellulose synthesis. Δ18OLGDZW was always close to irrigation water, and pex was similar (0.53 ± 0.02 SE) across environments when determinations were based on Δ18OSuc. Conversely, pex was erroneously and variably underestimated (range 0.02-0.44) when based on Δ18OLW. The photosynthetic signal fraction in Δ18OCel is much more constant than hitherto assumed, encouraging leaf physiological reconstructions.


Assuntos
Dióxido de Carbono , Celulose , Umidade , Isótopos de Oxigênio , Folhas de Planta , Sacarose , Folhas de Planta/metabolismo , Celulose/metabolismo , Dióxido de Carbono/metabolismo , Sacarose/metabolismo , Isótopos de Oxigênio/metabolismo , Lolium/metabolismo , Lolium/crescimento & desenvolvimento , Lolium/fisiologia , Atmosfera , Fotossíntese , Água/metabolismo
13.
Plant Cell Environ ; 47(9): 3590-3604, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39031544

RESUMO

The response of mesophyll conductance (gm) to CO2 plays a key role in photosynthesis and ecosystem carbon cycles under climate change. Despite numerous studies, there is still debate about how gm responds to short-term CO2 variations. Here we used multiple methods and looked at the relationship between stomatal conductance to CO2 (gsc) and gm to address this aspect. We measured chlorophyll fluorescence parameters and online carbon isotope discrimination (Δ) at different CO2 mole fractions in sunflower (Helianthus annuus L.), cowpea (Vigna unguiculata L.), and wheat (Triticum aestivum L.) leaves. The variable J and Δ based methods showed that gm decreased with an increase in CO2 mole fraction, and so did stomatal conductance. There were linear relationships between gm and gsc across CO2 mole fractions. gm obtained from A-Ci curve fitting method was higher than that from the variable J method and was not representative of gm under the growth CO2 concentration. gm could be estimated by empirical models analogous to the Ball-Berry model and the USO model for stomatal conductance. Our results suggest that gm and gsc respond in a coordinated manner to short-term variations in CO2, providing new insight into the role of gm in photosynthesis modelling.


Assuntos
Dióxido de Carbono , Helianthus , Células do Mesofilo , Estômatos de Plantas , Triticum , Dióxido de Carbono/metabolismo , Estômatos de Plantas/fisiologia , Células do Mesofilo/fisiologia , Células do Mesofilo/metabolismo , Triticum/fisiologia , Triticum/metabolismo , Helianthus/fisiologia , Helianthus/metabolismo , Isótopos de Carbono , Fotossíntese/fisiologia , Fabaceae/fisiologia , Clorofila/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo
14.
J Exp Bot ; 75(5): 1451-1464, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37943576

RESUMO

The 13C isotope composition (δ13C) of leaf dry matter is a useful tool for physiological and ecological studies. However, how post-photosynthetic fractionation associated with respiration and carbon export influences δ13C remains uncertain. We investigated the effects of post-photosynthetic fractionation on δ13C of mature leaves of Cleistogenes squarrosa, a perennial C4 grass, in controlled experiments with different levels of vapour pressure deficit and nitrogen supply. With increasing leaf age class, the 12C/13C fractionation of leaf organic matter relative to the δ13C of atmosphere CO2 (ΔDM) increased while that of cellulose (Δcel) was almost constant. The divergence between ΔDM and Δcel increased with leaf age class, with a maximum value of 1.6‰, indicating the accumulation of post-photosynthetic fractionation. Applying a new mass balance model that accounts for respiration and export of photosynthates, we found an apparent 12C/13C fractionation associated with carbon export of -0.5‰ to -1.0‰. Different ΔDM among leaves, pseudostems, daughter tillers, and roots indicate that post-photosynthetic fractionation happens at the whole-plant level. Compared with ΔDM of old leaves, ΔDM of young leaves and Δcel are more reliable proxies for predicting physiological parameters due to the lower sensitivity to post-photosynthetic fractionation and the similar sensitivity in responses to environmental changes.


Assuntos
Celulose , Poaceae , Poaceae/metabolismo , Celulose/metabolismo , Isótopos de Carbono , Fotossíntese/fisiologia , Carbono , Folhas de Planta/metabolismo , Dióxido de Carbono
15.
Biotechnol Bioeng ; 121(9): 2893-2906, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38822747

RESUMO

D-amino acid oxidase (DAAO)-catalyzed selective oxidative deamination is a very promising process for synthesizing l-amino acids including l-phosphinothricin (l-PPT, a high-efficiency and broad-spectrum herbicide). However, the wild-type DAAO's low activity toward unnatural substrates like d-phosphinothricin (d-PPT) hampers its application. Herein, a DAAO from Caenorhabditis elegans (CeDAAO) was screened and engineered to improve the catalytic potential on d-PPT. First, we designed a novel growth selection system, taking into account the intricate relationship between the growth of Escherichia coli (E. coli) and the catalytic mechanism of DAAO. The developed system was used for high-throughput screening of gene libraries, resulting in the discovery of a variant (M6) with significantly increased catalytic activity against d-PPT. The variant displays different catalytic properties on substrates with varying hydrophobicity and hydrophilicity. Analysis using Alphafold2 modeling and molecular dynamic simulations showed that the reason for the enhanced activity was the substrate-binding pocket with enlarged size and suitable charge distribution. Further QM/MM calculations revealed that the crucial factor for enhancing activity lies in reducing the initial energy barrier of the reductive half reaction. Finally, a comprehensive binding-model index to predict the enhanced activity of DAAO toward d-PPT, and an enzymatic deracemization approach was developed, enabling the efficient synthesis of l-PPT with remarkable efficiency.


Assuntos
Aminobutiratos , Caenorhabditis elegans , D-Aminoácido Oxidase , Escherichia coli , Engenharia de Proteínas , D-Aminoácido Oxidase/metabolismo , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/química , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/enzimologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/metabolismo , Engenharia de Proteínas/métodos , Animais , Aminobutiratos/metabolismo , Aminobutiratos/química , Desaminação , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química
16.
Langmuir ; 40(19): 10362-10373, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38691669

RESUMO

Poly(l-lactic acid) (PLLA) featuring desirable biodegradability and biocompatibility has been recognized as one of the promising eco-friendly biomaterials. However, low crystallization and poor mechanical and chemical performances dramatically hamper its practical application. In this work, we report that functionalized cellulose/PLLA composite superhydrophobic stereocomplex films with controllable water adhesion and protein adsorption can be fabricated by a facile approach for the first time. First, cellulose is surface-modified by means of two silanization modification methods. Then, superhydrophobic cellulose/PLLA composite films are prepared through a solvent-evaporation-induced phase separation method. The two cellulose/PLLA composite films exhibit extreme water repellency but tunable water adhesion from sticky to slippery. The protein adsorption capacity of the cellulose/PLLA composite films can also be regulated. In addition, the stereocomplexation of the composite film provides excellent mechanical properties with an elongation at break of 22.36%, which is 237.8% higher than that of a pure PLLA film, which is more suitable for biomaterials. Furthermore, good biodegradability of the PLLA composite films in nature enables the bio-based composites as alternative materials to replace conventional petroleum-based polymers. The superhydrophobic films have also been demonstrated for many applications, including slippery surfaces, liquid transportation without loss, and antifouling.

17.
Macromol Rapid Commun ; 45(18): e2400292, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38837517

RESUMO

Superhydrophobic materials used for oil-water separation have received wide attention. However, the simple and low-cost strategy for making durable superhydrophobic materials remains a major challenge. Here, this work reports that stable and durable superhydrophobic cotton fabrics can be prepared using a simple two-step impregnation process. Silica nanoparticles are surface modified by hydrolysis condensation of 3-aminopropyltrimethoxysilane (APTMS). 1,4-conjugate addition reaction between the acrylic group of cross-linking agent pentaerythritol triacrylate (PETA) and the amino group of octadecylamine (ODA) forms a covalent cross-linked rough network structure. The long hydrophobic chain of ODA makes the cotton fabric exhibit excellent superhydrophobic properties, and the water contact angle (WCA) of the fabric surface reaches 158°. The modified cotton fabric has good physical and chemical stability, self-cleaning, and anti-fouling. At the same time, the modified fabric shows excellent oil/water separation efficiency (98.16% after 20 cycles) and ultrahigh separation flux (15413.63 L m-2 h-1) due to its superhydrophobicity, superoleophilicity, and inherent porous structure. The method provides a broad prospect in the future diversification applications of oil/water separation and oil spill cleaning.


Assuntos
Fibra de Algodão , Interações Hidrofóbicas e Hidrofílicas , Óleos , Água , Água/química , Óleos/química , Silanos/química , Propriedades de Superfície , Dióxido de Silício/química , Nanopartículas/química , Tamanho da Partícula
18.
Eur J Clin Pharmacol ; 80(10): 1461-1469, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38967658

RESUMO

PURPOSE: Several studies have shown that subcutaneous injections of omalizumab can treat chronic idiopathic/spontaneous urticaria (CIU/CSU) patients by only assessing the efficacy on specific endpoints. This study aimed to quantitatively analyze different doses of omalizumab in CIU/CSU and compare it with ligelizumab. METHODS: Literature searches were performed in PubMed, Embase, and Web of Science databases. A model-based meta-analysis (MBMA) was utilized to develop a model incorporating time since the initiation of treatment and dose for omalizumab, with the change from baseline in Urticaria Activity Score (CFB-UAS7) as the primary efficacy endpoint. The time-course and dose-effect relationship throughout the omalizumab treatment period was analyzed, and the findings were compared with those of the investigational ligelizumab. RESULTS: The model equation for the CFB-UAS7 was established as E = -Emax × time/(ET50 + time) × (b0 + b1 × dose). The estimated values of the model parameters E max , ET 50 , b 0 , and b 1 were -1.16, 1.26 weeks, -9.90, and -0.0361 mg-1, respectively. At week 12 after the first dose, the model-predicted CFB-UAS7 for 150 mg and 300 mg of omalizumab were -16.0 (95% CI, -17.2 to -14.8) and -21.7 (95% CI, -22.9 to -20.5), respectively. In the PEARL-1 trial, the CFB-UAS7 for 72 mg and 120 mg of ligelizumab were -19.4 (95% CI, -20.7 to -18.1) and -19.3 (95% CI, -20.6 to -18.0), respectively. In the PEARL-2 trial, these values were -19.2 (95% CI, -20.5 to -17.9) and -20.3 (95% CI, -21.6 to -19.0), respectively. CONCLUSION: Omalizumab showed a significant dose-dependent effect in the treatment of CSU. Both 72 mg and 120 mg ligelizumab might have the potential to outperform 150 mg (but not 300 mg) omalizumab.


Assuntos
Antialérgicos , Urticária Crônica , Omalizumab , Humanos , Antialérgicos/administração & dosagem , Anticorpos Monoclonais Humanizados/administração & dosagem , Urticária Crônica/tratamento farmacológico , Relação Dose-Resposta a Droga , Modelos Biológicos , Omalizumab/administração & dosagem , Fatores de Tempo , Resultado do Tratamento
19.
Neurol Sci ; 45(5): 1897-1911, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38182844

RESUMO

Delirium is a common complication in acute stroke patients. A 2011 meta-analysis showed an increased risk of in-hospital mortality and mortality within 12 months post-stroke, longer hospitalization durations, and increased likelihood of being discharged to a nursing home for patients experiencing post-stroke delirium. There is a need for an updated meta-analysis with several new studies having been since published. The PubMed and Scopus databases were screened for relevant studies. Inclusion criteria were as follows: retrospective or prospective studies reporting on the effects of delirium accompanying acute stroke on mortality, functional outcomes, length of hospital stay and need for re-admission. Strength of association was presented as pooled adjusted relative risk (RR) for categorical outcomes and weighted mean difference (WMD) for continuous outcomes. Statistical analysis was done using STATA version 16.0. The meta-analysis included 22 eligible articles. Eighteen of the 22 studies were prospective follow ups. Included studies were of good quality. Post-stroke delirium was associated with increased risk of in-hospital mortality, as well as mortality within 12 months post-stroke. Patients with delirium experienced increased hospital stay durations, were at greater risk for hospital readmission, and showed elevated risk for poor functional outcome. Compared to those who did not have delirium, stroke patients with delirium were 42% less likely to be discharged to home. Acute stroke patients with delirium are at an increased risk for poor short- and long-term outcomes. More research is needed to identify the best set of interventions to manage such patients and improve outcomes.


Assuntos
Delírio , Acidente Vascular Cerebral , Humanos , Delírio/etiologia , Delírio/epidemiologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/mortalidade , Mortalidade Hospitalar
20.
Nano Lett ; 23(24): 11601-11607, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38063776

RESUMO

Two-dimensional (2D) semiconductors have attracted great attention as a novel class of gain materials for low-threshold, on-chip coherent light sources. Despite several experimental reports on lasing, the underlying gain mechanism of 2D materials remains elusive due to a lack of key information, including modal gain and the confinement factor. Here, we demonstrate a novel approach to directly determine the absorption coefficient of monolayer WS2 by characterizing the whispering gallery modes in a van der Waals microdisk cavity. By exploiting the cavity's high intrinsic quality factor of 2.5 × 104, the absorption coefficient spectrum and confinement factor are experimentally resolved with unprecedented accuracy. The excitonic gain reduces the WS2 absorption coefficient by 2 × 104 cm-1 at room temperature, and the experimental confinement factor is found to agree with the theoretical prediction. These results are essential for unveiling the gain mechanism in emergent, low-threshold 2D-semiconductor-based laser devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA