Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 16(25): e2000285, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32406176

RESUMO

Nanoparticles have become an important utility in many areas of medical treatment such as targeted drug and treatment delivery as well as imaging and diagnostics. These advances require a complete understanding of nanoparticles' fate once placed in the body. Upon exposure to blood, proteins adsorb onto the nanoparticles surface and form a protein corona, which determines the particles' biological fate. This study reports on the protein corona formation from blood serum and plasma on spherical and rod-shaped nanoparticles. These two types of mesoporous silica nanoparticles have identical chemistry, porosity, surface potential, and size in the y-dimension, one being a sphere and the other a rod shape. The results show a significantly larger amount of protein attaching from both plasma and serum on the rod-like particles compared to the spheres. Interrogation of the protein corona by liquid chromatography-mass spectrometry reveals shape-dependent differences in the adsorption of immunoglobulins and albumin proteins from both plasma and serum. This study points to the need for taking nanoparticle shape into consideration because it can have a significant impact on the fate and therapeutic potential of nanoparticles when placed in the body.


Assuntos
Nanopartículas , Coroa de Proteína , Sistemas de Liberação de Medicamentos , Dióxido de Silício , Propriedades de Superfície
2.
Langmuir ; 33(29): 7322-7331, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28658956

RESUMO

Protein adsorption to biomaterials is critical in determining their suitability for specific applications, such as implants or biosensors. Here, we show that surface nanoroughness can be tailored to control the covalent binding of proteins to plasma-deposited polyoxazoline (PPOx). Nanoengineered surfaces were created by immobilizing gold nanoparticles varying in size and surface density on PPOx films. To keep the surface chemistry consistent while preserving the nanotopography, all substrates were overcoated with a nanothin PPOx film. Bovine serum albumin was chosen to study protein interactions with the nanoengineered surfaces. The results demonstrate that the amount of protein bound to the surface is not directly correlated with the increase in surface area. Instead, it is determined by nanotopography-induced geometric effects and surface wettability. A densely packed array of 16 and 38 nm nanoparticles hinders protein adsorption compared to smooth PPOx substrates, while it increases for 68 nm nanoparticles. These adaptable surfaces could be used for designing biomaterials where proteins adsorption is or is not desirable.


Assuntos
Nanoestruturas , Adsorção , Animais , Fibrinogênio , Ouro , Nanopartículas Metálicas , Oxazóis , Soroalbumina Bovina , Propriedades de Superfície
3.
Nanomaterials (Basel) ; 12(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215013

RESUMO

Nanoparticles are widely used for biomedical applications such as vaccine, drug delivery, diagnostics, and therapeutics. This study aims to reveal the influence of nanoparticle surface functionalization on protein corona formation from blood serum and plasma and the subsequent effects on the innate immune cellular responses. To achieve this goal, the surface chemistry of silica nanoparticles of 20 nm diameter was tailored via plasma polymerization with amine, carboxylic acid, oxazolines, and alkane functionalities. The results of this study show significant surface chemistry-induced differences in protein corona composition, which reflect in the subsequent inflammatory consequences. Nanoparticles rich with carboxylic acid surface functionalities increased the production of pro-inflammatory cytokines in response to higher level of complement proteins and decreased the number of lipoproteins found in their protein coronas. On another hand, amine rich coatings led to increased expressions of anti-inflammatory markers such as arginase. The findings demonstrate the potential to direct physiological responses to nanomaterials via tailoring their surface chemical composition.

4.
Nanoscale ; 13(47): 19936-19945, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34820678

RESUMO

Hemostatic agents are pivotal for managing clinical and traumatic bleeding during emergency and domestic circumstances. Herein, a novel functional hybrid nanocomposite material consisting of plasma polymer-modified zeolite 13X and ultra-small gold nanoclusters (AuNCs) was fabricated as an efficient hemostatic agent. The surface of zeolite 13X was functionalised with amine groups which served as binding sites for carboxylate terminated AuNCs. Protein corona studies revealed the enhanced adsorption of two proteins, namely, coagulation factors and plasminogen as a result of AuNCs immobilization on the zeolite surface. The immune response studies showed that the hybrid nanocomposites are effective in reducing inflammation, which combined with a greater attachment of vitronectin, may promote wound healing. The hemostatic potential of the nanocomposite could be directly correlated with their immunomodulatory and anti-haemorrhagic properties. Together, the hybrid nanoengineered material developed in this work could provide a new avenue to tackle life-threatening injuries in civilian and other emergencies.


Assuntos
Ouro , Zeolitas , Anti-Inflamatórios , Hemorragia/terapia , Humanos , Polímeros
5.
Chem Commun (Camb) ; 55(2): 171-174, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30418438

RESUMO

Microneedle patches have become an exciting means for transdermal delivery of various therapeutics. Herein, we report on self-sterilizing dissolving nanosilver-loaded microneedle patches created from carboxymethylcellulose capable of suppressing microbial pathogen growth at the insertion site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA