Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Molecules ; 29(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257340

RESUMO

Cancer is one of the leading causes of death worldwide, with breast cancer being the second cause of cancer-related mortality among women. Natural Products (NPs) are one of the main sources for drug discovery. During a screening campaign focused on the identification of extracts from Fundación MEDINA's library inhibiting the proliferation of cancer cell lines, a significant bioactivity was observed in extracts from cultures of the fungus Angustimassarina populi CF-097565. Bioassay-guided fractionation of this extract led to the identification and isolation of herbarin (1), 1-hydroxydehydroherbarin (4) plus other three naphthoquinone derivatives of which 3 and 5 are new natural products and 2 is herein described from a natural source for the first time. Four of these compounds (1, 3, 4 and 5) confirmed a specific cytotoxic effect against the human breast cancer cell line MCF-7. To evaluate the therapeutic potential of the compounds isolated, their efficacy was validated in 3D cultures, a cancer model of higher functionality. Additionally, an in-depth study was carried out to test the effect of the compounds in terms of cell mortality, sphere disaggregation, shrinkage, and morphology. The cell profile of the compounds was also compared to that of known cytotoxic compounds with the aim to distinguish the drug mode of action (MoA). The profiles of 1, 3 and 4 showed more biosimilarity between them, different to 5, and even more different to other known cytotoxic agents, suggesting an alternative MoA responsible for their cytotoxicity in 3D cultures.


Assuntos
Ascomicetos , Medicamentos Biossimilares , Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Bioensaio
2.
J Nat Prod ; 85(1): 25-33, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35045259

RESUMO

The number of species in Aspergillus section Flavi has recently increased to 36 and includes some of the most important and well-known species in the genus Aspergillus. Numerous secondary metabolites, especially mycotoxins, have been reported from species such as A. flavus; however many of the more recently described species are less studied from a chemical point of view. This paper describes the use of MS/MS-based molecular networking to investigate the metabolome of A. caelatus leading to the discovery of several new diketopiperazine dimers and aspergillicins. An MS-guided isolation procedure yielded six new compounds, including asperazines D-H (1-5) and aspergillicin H (6). Asperazines G and H are artifacts derived from asperazines E and F formed during the separation process by formic acid. Two known compounds, aspergillicins A and C (7 and 8), were isolated from the same strain. Structures were elucidated by analyzing their HR-MS/MS and NMR spectroscopic data. The absolute configuration of asperazines D-F and aspergillicin H were deduced from the combination of NMR, Marfey's method, and ECD analyses.


Assuntos
Aspergillus/química , Depsipeptídeos/química , Dicetopiperazinas/química , Dimerização , Micotoxinas/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas em Tandem
3.
Int J Mol Sci ; 23(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35682786

RESUMO

Sleeping sickness or African trypanosomiasis is a serious health concern with an added socio-economic impact in sub-Saharan Africa due to direct infection in both humans and their domestic livestock. There is no vaccine available against African trypanosomes and its treatment relies only on chemotherapy. Although the current drugs are effective, most of them are far from the modern concept of a drug in terms of toxicity, specificity and therapeutic regime. In a search for new molecules with trypanocidal activity, a high throughput screening of 2000 microbial extracts was performed. Fractionation of one of these extracts, belonging to a culture of the fungus Amesia sp., yielded a new member of the curvicollide family that has been designated as curvicollide D. The new compound showed an inhibitory concentration 50 (IC50) 16-fold lower in Trypanosoma brucei than in human cells. Moreover, it induced cell cycle arrest and disruption of the nucleolar structure. Finally, we showed that curvicollide D binds to DNA and inhibits transcription in African trypanosomes, resulting in cell death. These results constitute the first report on the activity and mode of action of a member of the curvicollide family in T. brucei.


Assuntos
Tripanossomicidas , Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Fungos , Humanos , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Tripanossomíase Africana/tratamento farmacológico
4.
Malar J ; 20(1): 457, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34865639

RESUMO

BACKGROUND: Malaria is a global health problem for which novel therapeutic compounds are needed. To this end, a recently published novel family of antiplasmodial macrolides, strasseriolides A-D, was herein subjected to in vivo efficacy studies and preclinical evaluation in order to identify the most promising candidate(s) for further development. METHODS: Preclinical evaluation of strasseriolides A-D was performed by MTT-based cytotoxicity assay in THLE-2 (CRL-2706) liver cells, cardiotoxicity screening using the FluxOR™ potassium assay in hERG expressed HEK cells, LC-MS-based analysis of drug-drug interaction involving CYP3A4, CYP2D6 and CYP2C9 isoforms inhibition and metabolic stability assays in human liver microsomes. Mice in vivo toxicity studies were also accomplished by i.v. administration of the compounds (vehicle: 0.5% HPMC, 0.5% Tween 80, 0.5% Benzyl alcohol) in mice at 25 mg/kg dosage. Plasma were prepared from mice blood samples obtained at different time points (over a 24-h period), and analysed by LC-MS to quantify compounds. The most promising compounds, strasseriolides C and D, were subjected to a preliminary in vivo efficacy study in which transgenic GFP-luciferase expressing Plasmodium berghei strain ANKA-infected Swiss Webster female mice (n = 4-5) were treated 48 h post-infection with an i.p. dosage of strasseriolide C at 50 mg/kg and strasseriolide D at 22 mg/kg for four days after which luciferase activity was quantified on day 5 in an IVIS® Lumina II imager. RESULTS: Strasseriolides A-D showed no cytotoxicity, no carditoxicity and no drug-drug interaction problems in vitro with varying intrinsic clearance (CLint). Only strasseriolide B was highly toxic to mice in vivo (even at 1 mg/kg i.v. dosage) and, therefore, discontinued in further in vivo studies. Strasseriolide D showed statistically significant activity in vivo giving rise to lower parasitaemia levels (70% lower) compared to the controls treated with vehicle. CONCLUSIONS: Animal efficacy and preclinical evaluation of the recently discovered potent antiplasmodial macrolides, strasseriolides A-D, led to the identification of strasseriolide D as the most promising compound for further development. Future studies dealing on structure optimization, formulation and establishment of optimal in vivo dosage explorations of this novel compound class could enhance their clinical potency and allow for progress to later stages of the developmental pipeline.


Assuntos
Antimaláricos , Ascomicetos/química , Macrolídeos , Malária/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Antimaláricos/toxicidade , Avaliação Pré-Clínica de Medicamentos , Feminino , Macrolídeos/química , Macrolídeos/farmacologia , Macrolídeos/toxicidade , Camundongos
5.
Molecules ; 26(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299537

RESUMO

Microbial natural products are an invaluable resource for the biotechnological industry. Genome mining studies have highlighted the huge biosynthetic potential of fungi, which is underexploited by standard fermentation conditions. Epigenetic effectors and/or cultivation-based approaches have successfully been applied to activate cryptic biosynthetic pathways in order to produce the chemical diversity suggested in available fungal genomes. The addition of Suberoylanilide Hydroxamic Acid to fermentation processes was evaluated to assess its effect on the metabolomic diversity of a taxonomically diverse fungal population. Here, metabolomic methodologies were implemented to identify changes in secondary metabolite profiles to determine the best fermentation conditions. The results confirmed previously described effects of the epigenetic modifier on the metabolism of a population of 232 wide diverse South Africa fungal strains cultured in different fermentation media where the induction of differential metabolites was observed. Furthermore, one solid-state fermentation (BRFT medium), two classic successful liquid fermentation media (LSFM and YES) and two new liquid media formulations (MCKX and SMK-II) were compared to identify the most productive conditions for the different populations of taxonomic subgroups.


Assuntos
Epigênese Genética/genética , Fungos/genética , Folhas de Planta/microbiologia , Produtos Biológicos/metabolismo , Vias Biossintéticas/genética , Biotecnologia/métodos , Meios de Cultura/metabolismo , Fermentação/genética , Genoma Fúngico/genética , Metabolômica/métodos , África do Sul
6.
Molecules ; 25(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033190

RESUMO

Abstract: A main cellular functional module that becomes dysfunctional during aging is the proteostasis network. In the present study, we show that benzoic acid derivatives isolated from Bjerkandera adusta promote the activity of the two main protein degradation systems, namely the ubiquitin-proteasome (UPP) and especially the autophagy-lysosome pathway (ALP) in human foreskin fibroblasts. Our findings were further supported by in silico studies, where all compounds were found to be putative binders of both cathepsins B and L. Among them, compound 3 (3-chloro-4-methoxybenzoic acid) showed the most potent interaction with both enzymes, which justifies the strong activation of cathepsins B and L (467.3 ± 3.9%) on cell-based assays. Considering that the activity of both the UPP and ALP pathways decreases with aging, our results suggest that the hydroxybenzoic acid scaffold could be considered as a promising candidate for the development of novel modulators of the proteostasis network, and likely of anti-aging agents.


Assuntos
Autofagia/fisiologia , Coriolaceae/química , Hidroxibenzoatos/farmacologia , Lisossomos/fisiologia , Proteostase/efeitos dos fármacos , Ácido Benzoico/farmacologia , Catepsinas/metabolismo , Extratos Celulares/farmacologia , Linhagem Celular , Coriolaceae/metabolismo , Humanos , Hidroxibenzoatos/química , Simulação de Acoplamento Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
7.
Appl Environ Microbiol ; 84(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858203

RESUMO

Among the plethora of unusual secondary metabolites isolated from Stachylidium bicolor are the tetrapeptidic endolides A and B. Both tetrapeptides contain 3-(3-furyl)-alanine residues, previously proposed to originate from bacterial metabolism. Inspired by this observation, we aimed to identify the presence of endosymbiotic bacteria in S. bicolor and to discover the true producer of the endolides. The endobacterium Burkholderia contaminans was initially detected by 16S rRNA gene amplicon sequencing from the fungal metagenome and was subsequently isolated. It was confirmed that the tetrapeptides were produced by the axenic B. contaminans only when in latency. Fungal colonies unable to produce conidia and the tetrapeptides were isolated and confirmed to be free of B. contaminans A second endosymbiont identified as related to Sphingomonas leidyi was also isolated. In situ imaging of the mycelium supported an endosymbiotic relationship between S. bicolor and the two endobacteria. Besides the technical novelty, our in situ analyses revealed that the two endobacteria are compartmentalized in defined fungal cells, prevailing mostly in latency when in symbiosis. Within the emerging field of intracellular bacterial symbioses, fungi are the least studied eukaryotic hosts. Our study further supports the Fungi as a valuable model for understanding endobacterial symbioses in eukaryotes.IMPORTANCE The discovery of two bacterial endosymbionts harbored in Stachylidium bicolor mycelium, Burkholderia contaminans and Sphingomonas leidyi, is described here. Production of tetrapeptides inside the mycelium is ensured by B. contaminans, and fungal sporulation is influenced by the endosymbionts. Here, we illustrate the bacterial endosymbiotic origin of secondary metabolites in an Ascomycota host.


Assuntos
Ascomicetos/fisiologia , Burkholderia/fisiologia , Sphingomonas/fisiologia , Simbiose , Ascomicetos/química , Ascomicetos/crescimento & desenvolvimento , Burkholderia/genética , Burkholderia/isolamento & purificação , Micélio/química , Micélio/fisiologia , Peptídeos Cíclicos/metabolismo , Sphingomonas/genética , Sphingomonas/isolamento & purificação , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/fisiologia
8.
J Nat Prod ; 81(6): 1488-1492, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29792325

RESUMO

Two new epimeric dihalogenated diaporthins, (9 R *)-8-methyl-9,11-dichlorodiaporthin (2) and (9 S *)-8-methyl-9,11-dichlorodiaporthin (3), have been isolated from the soil fungus Hamigera fusca NRRL 35721 alongside the known regioisomeric isocoumarin 8-methyl-11,11-dichlorodiaporthin (1). Their structures were elucidated by high-resolution mass spectrometry and NMR spectroscopy combined with molecular modeling. Compounds 1-3 are the first isocoumarins and the first halogenated metabolites ever reported from the Hamigera genus. The new compounds 2 and 3 display a non-geminal aliphatic dichlorination pattern unprecedented among known fungal dihalogenated aromatic polyketides. A bifunctional methyltransferase/aliphatic halogenase flavoenzyme is proposed to be involved in the biosynthesis of dichlorinated diaporthins 1-3. These metabolites are weakly cytotoxic.


Assuntos
Fungos/química , Pironas/química , Halogenação , Isocumarinas/química , Espectroscopia de Ressonância Magnética/métodos , Policetídeos/química
9.
J Nat Prod ; 80(4): 845-853, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28277681

RESUMO

A search for cytotoxic agents from cultures of the endophytic fungus Dothiora sp., isolated from the endemic plant Launaea arborescens, led to the isolation of six new compounds structurally related to hormonemate, with moderate cytotoxic activity against different cancer cell lines. By using a bioassay-guided fractionation approach, hormonemates A-D (1-4), hormonemate (5), and hormonemates E (6) and F (7) were obtained from the acetone extract of this fungus. Their structures were determined using a combination of HRMS, ESI-qTOF-MS/MS, 1D and 2D NMR experiments, and chemical degradation. The cytotoxic activities of these compounds were evaluated by microdilution colorimetric assays against human breast adenocarcinoma (MCF-7), human liver cancer cells (HepG2), and pancreatic cancer cells (MiaPaca_2). Most of the compounds displayed cytotoxic activity against this panel.


Assuntos
Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Ascomicetos/química , Asteraceae/química , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres/farmacologia , Células Hep G2 , Humanos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular
10.
Planta Med ; 83(6): 545-550, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27706529

RESUMO

During a high-throughput screening program focused on the discovery and characterization of new antifungal compounds, a total of 8320 extracts from Fundacion MEDINA's collection were screened against a panel of 6 fungal parasitic strains, namely Candida glabrata, Candida krusei, Candida parapsilosis, Candida tropicalis, Candida albicans, and Aspergillus fumigatus. A total of 127 extracts displayed antifungal properties and, after LC/MS dereplication, 10 were selected for further fractionation. Bioassay-guided fractionation from a 1-L fermentation of one of these extracts, belonging to the fungus Chaetopsina sp., led to the isolation of linoleyl sulphate (1), linolenyl sulphate (2), and oleyl sulphate (3) as the compounds responsible for the antifungal activity. These molecules were previously described as synthetic products with the ability to produce the allosteric inhibition of soybean lipoxygenase and human lipoxygenase.


Assuntos
Antifúngicos/farmacologia , Ascomicetos/química , Aspergillus fumigatus/efeitos dos fármacos , Candida/efeitos dos fármacos , Lauraceae/microbiologia , Sulfatos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Ascomicetos/isolamento & purificação , Humanos , Estrutura Molecular , Folhas de Planta/microbiologia , Sulfatos/química , Sulfatos/isolamento & purificação
11.
Molecules ; 21(2)2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26901184

RESUMO

Small molecule histone deacetylase (HDAC) and DNA methyltransferase (DNMT) inhibitors are commonly used to perturb the production of fungal metabolites leading to the induction of the expression of silent biosynthetic pathways. Several reports have described the variable effects observed in natural product profiles in fungi treated with HDAC and DNMT inhibitors, such as enhanced chemical diversity and/or the induction of new molecules previously unknown to be produced by the strain. Fungal endophytes are known to produce a wide variety of secondary metabolites (SMs) involved in their adaptation and survival within higher plants. The plant-microbe interaction may influence the expression of some biosynthetic pathways, otherwise cryptic in these fungi when grown in vitro. The aim of this study was to setup a systematic approach to evaluate and identify the possible effects of HDAC and DNMT inhibitors on the metabolic profiles of wild type fungal endophytes, including the chemical identification and characterization of the most significant SMs induced by these epigenetic modifiers.


Assuntos
Inibidores Enzimáticos/farmacologia , Fungos/metabolismo , Plantas/microbiologia , Metabolismo Secundário/efeitos dos fármacos , Vias Biossintéticas/efeitos dos fármacos , DNA-Citosina Metilases/antagonistas & inibidores , Endófitos/efeitos dos fármacos , Endófitos/metabolismo , Fungos/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Metabolômica
12.
J Nat Prod ; 78(3): 468-75, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25636062

RESUMO

Colisporifungin (1), a cyclic depsilipopeptide structurally related to the aselacins, and cavinafungins A and B, two linear peptides, were isolated from liquid culture broths of the hitherto unstudied fungus Colispora cavincola using a Candida albicans whole-cell assay as well as a bioassay to detect compounds potentiating the antifungal activity of caspofungin. The structural elucidation, including the absolute configuration of the new molecules, was accomplished using a combination of spectroscopic and chemical techniques, including 1D and 2D NMR, HRMS, and Marfey's analysis. The cyclic peptide colisporifungin displayed a strong potentiation of the growth inhibitory effect of caspofungin against Aspergillus fumigatus and, to a lesser extent, against Candida albicans. The linear peptides displayed broad-spectrum antifungal activities inhibiting growth of Candida species (MIC values 0.5-4 µg/mL) as well as A. fumigatus with a prominent inhibition of 8 µg/mL.


Assuntos
Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Ascomicetos/química , Equinocandinas/isolamento & purificação , Equinocandinas/farmacologia , Lipopeptídeos/isolamento & purificação , Lipopeptídeos/farmacologia , Antifúngicos/química , Aspergillus fumigatus/efeitos dos fármacos , Candida/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Caspofungina , Equinocandinas/química , Lipopeptídeos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular
13.
Microb Ecol ; 67(3): 648-58, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24419542

RESUMO

Dry olive residue (DOR) is an abundant waste product resulting from a two-phase olive oil extraction system. Due to its high organic and mineral content, this material has been proposed as an organic soil amendment; however, it presents phytotoxic and microtoxic properties. Thus, a pretreatment is necessary before its application to soil. Among the strategies for the bioremediation of DOR is treatment with ligninolytic fungi, e.g. Coriolopsis floccosa. This work aimed to assess the diversity of culturable fungi in a soil of the southeast Iberian Peninsula and to evaluate the short-term impact of untransformed and C. floccosa-transformed DOR on soil mycobiota. A total of 1,733 strains were isolated by the particle filtration method and were grouped among 109 different species using morphological and molecular methods. The majority of isolates were ascomycetes and were concentrated among three orders: Hypocreales, Eurotiales and Capnodiales. The soil amendment with untransformed DOR was associated with a depression in fungal diversity at 30 days and changes in the proportions of the major species. However, when C. floccosa-transformed DOR was applied to the soil, changes in fungal diversity were less evident, and species composition was similar to unamended soil.


Assuntos
Fungos/patogenicidade , Olea/metabolismo , Microbiologia do Solo , Análise por Conglomerados , Contagem de Colônia Microbiana , DNA Fúngico/química , DNA Fúngico/genética , Filtração , Fungos/classificação , Fungos/genética , Fungos/crescimento & desenvolvimento , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Espanha
14.
J Nat Prod ; 77(9): 2118-23, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25215605

RESUMO

Bioassay-guided fractionation of the crude fermentation extract of Heterospora chenopodii led to the isolation of a novel monoacylglyceryltrimethylhomoserine (1). The structure of this new betaine lipid was elucidated by detailed spectroscopic analysis using one- and two-dimensional NMR experiments and high-resolution mass spectrometry. Compound 1 displayed moderate in vitro antimalarial activity against Plasmodium falciparum, with an IC50 value of 7 µM. This betaine lipid is the first monoacylglyceryltrimethylhomoserine ever reported in the Fungi, and its acyl moiety also represents a novel natural 3-keto fatty acid. The new compound was isolated during a drug discovery program aimed at the identification of new antimalarial leads from a natural product library of microbial extracts. Interestingly, the related fungus Heterospora dimorphospora was also found to produce compound 1, suggesting that species of this genus may be a promising source of monoacylglyceryltrimethylhomoserines.


Assuntos
Antimaláricos , Betaína , Plasmodium falciparum/efeitos dos fármacos , Triglicerídeos , Antimaláricos/química , Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Betaína/análogos & derivados , Betaína/química , Betaína/isolamento & purificação , Betaína/farmacologia , Humanos , Malária/tratamento farmacológico , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Extratos Vegetais/química , Triglicerídeos/química , Triglicerídeos/isolamento & purificação , Triglicerídeos/farmacologia
15.
J Agric Food Chem ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935555

RESUMO

A study targeting novel antifungal metabolites identified potent in vitro antifungal activity against key plant pathogens in acetone extracts of Streptomyces sp. strain CA-296093. Feature-based molecular networking revealed the presence in this extract of antimycin-related compounds, leading to the isolation of four new compounds: escuzarmycins A-D (1-4). Extensive structural elucidation, employing 1D and 2D NMR, high-resolution mass spectrometry, Marfey's analysis, and NOESY correlations, confirmed their structures. The bioactivity of these compounds was tested against six fungal phytopathogens, and compounds 3 and 4 demonstrated strong efficacy, particularly against Zymoseptoria tritici, with compound 3 exhibiting the highest potency (EC50: 11 nM). Both compounds also displayed significant antifungal activity against Botrytis cinerea and Colletotrichum acutatum, with compound 4 proving to be the most potent. Despite moderate cytotoxicity against the human cancer cell line HepG2, compounds 3 and 4 emerge as promising fungicides for combating Septoria tritici blotch, anthracnose, and gray mold.

16.
Biomed Pharmacother ; 170: 116056, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159372

RESUMO

Duchenne muscular dystrophy (DMD) is a devastating degenerative disease of skeletal muscles caused by loss of dystrophin, a key protein that maintains muscle integrity, which leads to progressive muscle degeneration aggravated by chronic inflammation, muscle stem cells' (MuSCs) reduced regenerative capacity and replacement of muscle with fibroadipose tissue. Previous research has shown that pharmacological GSK-3ß inhibition favors myogenic differentiation and plays an important role in modulating inflammatory processes. Isolecanoric acid (ILA) is a natural product isolated from a fungal culture displaying GSK-3ß inhibitory properties. The present study aimed to investigate the proregenerative and anti-inflammatory properties of this natural compound in the DMD context. Our results showed that ILA markedly promotes myogenic differentiation of myoblasts by increasing ß-Catenin signaling and boosting the myogenic potential of mouse and human stem cells. One important finding was that the GSK-3ß/ß-Catenin pathway is altered in dystrophic mice muscle and ILA enhances the myofiber formation of dystrophic MuSCs. Treatment with this natural compound improves muscle regeneration of dystrophic mice by, in turn, improving functional performance. Moreover, ILA ameliorates the inflammatory response in both muscle explants and the macrophages isolated from dystrophic mice to, thus, mitigate fibrosis after muscle damage. Overall, we show that ILA modulates both inflammation and muscle regeneration to, thus, contribute to improve the dystrophic phenotype.


Assuntos
Distrofia Muscular de Duchenne , Animais , Camundongos , Humanos , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/metabolismo , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos Endogâmicos mdx , Músculo Esquelético , Inflamação/metabolismo , Modelos Animais de Doenças
17.
Int J Biol Macromol ; 264(Pt 1): 130458, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423421

RESUMO

The PD-1/PD-L1 protein-protein interaction (PPI) controls an adaptive immune resistance mechanism exerted by tumor cells to evade immune responses. The large-molecule nature of current commercial monoclonal antibodies against this PPI hampers their effectiveness by limiting tumor penetration and inducing severe immune-related side effects. Synthetic small-molecule inhibitors may overcome such limitations and have demonstrated promising clinical translation, but their design is challenging. Microbial natural products (NPs) are a source of small molecules with vast chemical diversity that have proved anti-tumoral activities, but which immunotherapeutic properties as PD-1/PD-L1 inhibitors had remained uncharacterized so far. Here, we have developed the first cell-based PD-1/PD-L1 blockade reporter assay to screen NPs libraries. In this study, 6000 microbial extracts of maximum biosynthetic diversity were screened. A secondary metabolite called alpha-cyclopiazonic acid (α-CPA) of a bioactive fungal extract was confirmed as a new PD-1/PD-L1 inhibitor with low micromolar range in the cellular assay and in an additional cell-free competitive assay. Thermal denaturation experiments with PD-1 confirmed that the mechanism of inhibition is based on its stabilization upon binding to α-CPA. The identification of α-CPA as a novel PD-1 stabilizer proves the unprecedented resolution of this methodology at capturing specific PD-1/PD-L1 PPI inhibitors from chemically diverse NP libraries.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Anticorpos Monoclonais
18.
Biomed Pharmacother ; 177: 117018, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38908208

RESUMO

Pancreatic cancer (PC) shows a high fatality rate that can only be faced with a combination of surgery and chemotherapy or palliative treatment in the case of advanced patients. Besides, PC tumors are enriched with subpopulations of cancer stem cells (CSCs) that are resistant to the existing chemotherapeutic agents, which raises an important need for the identification of new drugs. To fill this gap, we have tested the anti-tumoral activity of microbial extracts, which chemical diversity offers a broad spectrum of potential new bioactive compounds. Extracts derived from the fungus Onychocola sp. CF-107644 were assayed via high throughput screening followed by bioassay-guided fractionation and resulted in the identification and isolation of six benzophenone derivatives with antitumoral activity: onychocolones A-F (#1-6). The structures of the compounds were established by spectroscopic methods, including ESI-TOF MS, 1D and 2D NMR analyses and X-ray diffraction. Compounds #1-4 significantly inhibited the growth of the pancreas tumoral cell lines, with low-micromolar Median Effective Doses (ED50s). Compound #1 (onychocolone A) was prioritized for further profiling due to its pro-apoptotic effect, which was further validated on 3D spheroids and pancreatic CSCs. Protein expression assays showed that the effect was mechanistically linked to the inhibition of MEK onco-signaling pathway. The efficacy of onychocolone A was also demonstrated in vivo by the reduction of tumor growth in a pancreatic xenograft mouse model generated by CSCs. Altogether, the data support that onychocolone A is a promising new small molecule for hit-to-lead development of a new treatment for PC.

19.
J Fungi (Basel) ; 9(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37754991

RESUMO

Fungal phytopathogens are the major agents responsible for causing severe damage to and losses in agricultural crops worldwide. Botrytis cinerea, Colletotrichum acutatum, Fusarium proliferatum, and Magnaporthe grisea are included in the top ten fungal phytopathogens that impose important plant diseases on a broad range of crops. Microbial natural products can be an attractive alternative for the biological control of phytopathogens. The objective of this work was to develop and validate a High-throughput Screening (HTS) platform to evaluate the antifungal potential of chemicals and natural products against these four important plant pathogens. Several experiments were performed to establish the optimal assay conditions that provide the best reproducibility and robustness. For this purpose, we have evaluated two media formulations (SDB and RPMI-1640), several inoculum concentrations (1 × 106, 5 × 105 and 5 × 106 conidia/mL), the germination curves for each strain, each strain's tolerance to dimethyl sulfoxide (DMSO), and the Dose Response Curves (DRC) of the antifungal control (Amphotericin B). The assays were performed in 96-well plate format, where absorbance at 620 nm was measured before and after incubation to evaluate growth inhibition, and fluorescence intensity at 570 nm excitation and 615 nm emission was monitored after resazurin addition for cell viability evaluation. Quality control parameters (RZ' Factors and Signal to Background (S/B) ratios) were determined for each assay batch. The assay conditions were finally validated by titrating 40 known relevant antifungal agents and testing 2400 microbial natural product extracts from the MEDINA Library through both HTS agar-based and HTS microdilution-based set-ups on the four phytopathogens.

20.
J Fungi (Basel) ; 9(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37754995

RESUMO

In a survey to evaluate the potential of lichens associated with gypsum areas as sources of new antifungal metabolites, six species of lichens were collected in the gypsum outcrops of the Sorbas Desert (Diploschistes ocellatus and Seirophora lacunosa) and the Tabernas Desert (Cladonia foliacea, Acarospora placodiformis, Squamarina lentigera and Xanthoparmelia pokornyi) in southern Spain. Raw lichen acetone extracts were tested against a panel of seven phytopathogenic fungi, including Botrytis cinerea, Colletotrichum acutatum, Fusarium oxysporum f.sp cubense TR4, Fusarium ploriferaum, Magnaporthe grisea, Verticillium dahliae and Zymoseptoria tritici. Active extracts of Cladonia foliacea, Xanthoparmelia pokornyi and Squamarina lentigera were analyzed by HPLC-MS/MS and Molecular Networking to identify possible metabolites responsible for the antifungal activity. A total of ten depside-like metabolites were identified by MS/MS dereplication and NMR experiments, of which one was a new derivative of fumaroprotocetraric acid. The compounds without previously described biological activity were purified and tested against the panel of fungal phytopathogens. Herein, the antifungal activity against fungal phytopathogens of 4'-O-methylpaludosic acid, divaricatic acid and stenosporic acid is reported for the first time. Stenosporic and divaricatic acids displayed a broad antifungal spectrum against seven relevant fungal phytopathogens in a micromolar range, including the extremely resistant fungus F. oxysporum f. sp. cubense Tropical Race 4 (TR4). 4'-O-methylpaludosic acid exhibited specific antifungal activity against the wheat pathogen Z. tritici, with an IC50 of 38.87 µg/mL (87.1 µM) in the absorbance-based assay and 24.88 µg/mL (55.52 µM) in the fluorescence-based assay.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA