Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Microbiology (Reading) ; 160(Pt 7): 1357-1368, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24763424

RESUMO

Cisplatin is commonly used in cancer therapy and yeast cells are also sensitive to this compound. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin treatment, which are dependent on or independent of SKY1 function--a gene whose deletion increases resistance to the drug. Gene expression changes produced by addition of cisplatin to W303 and W303-Δsky1 cells were recorded using DNA microarrays. The data, validated by quantitative PCR, revealed 122 differentially expressed genes: 69 upregulated and 53 downregulated. Among the upregulated genes, those related to sulfur metabolism were over-represented and partially dependent on Sky1. Deletions of MET4 or other genes encoding co-regulators of the expression of sulfur-metabolism-related genes, with the exception of MET28, did not modify the cisplatin sensitivity of yeast cells. One of the genes with the highest cisplatin-induced upregulation was SEO1, encoding a putative permease of sulfur compounds. We also measured the platinum, sulfur and glutathione content in W303, W303-Δsky1 and W303-Δseo1 cells after cisplatin treatment, and integration of the data suggested that these transcriptional changes might represent a cellular response that allowed chelation of cisplatin with sulfur-containing amino acids and also helped DNA repair by stimulating purine biosynthesis. The transcription pattern of stimulation of sulfur-containing amino acids and purine synthesis decreased, or even disappeared, in the W303-Δsky1 strain.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Regulação Fúngica da Expressão Gênica , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Enxofre/metabolismo , Regulação para Baixo , Expressão Gênica , Perfilação da Expressão Gênica , Glutationa/análise , Glutationa/metabolismo , Concentração Inibidora 50 , Redes e Vias Metabólicas , Platina/análise , Platina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Enxofre/análise , Transcriptoma , Regulação para Cima
2.
Int J Mol Sci ; 15(7): 12573-90, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25029545

RESUMO

Sky1 is the only member of the SR (Serine-Arginine) protein kinase family in Saccharomyces cerevisiae. When yeast cells are treated with the anti-cancer drug cisplatin, Sky1 kinase activity is necessary to produce the cytotoxic effect. In this study, proteome changes in response to this drug and/or SKY1 deletion have been evaluated in order to understand the role of Sky1 in the response of yeast cells to cisplatin. Results reveal differential expression of proteins previously related to the oxidative stress response, DNA damage, apoptosis and mitophagy. With these precedents, the role of Sky1 in apoptosis, necrosis and mitophagy has been evaluated by flow-cytometry, fluorescence microscopy, biosensors and fluorescence techniques. After cisplatin treatment, an apoptotic-like process diminishes in the ∆sky1 strain in comparison to the wild-type. The treatment does not affect mitophagy in the wild-type strain, while an increase is observed in the ∆sky1 strain. The increased resistance to cisplatin observed in the ∆sky1 strain may be attributable to a decrease of apoptosis and an increase of mitophagy.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Cisplatino/farmacologia , Mitofagia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/genética , Estresse Oxidativo , Proteínas Serina-Treonina Quinases/genética , Proteoma/genética , Proteoma/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
J Struct Biol ; 177(2): 392-401, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22193516

RESUMO

ß-Galactosidase or lactase is a very important enzyme in the food industry, being that from the yeast Kluyveromyces lactis the most widely used. Here we report its three-dimensional structure both in the free state and complexed with the product galactose. The monomer folds into five domains in a pattern conserved with the prokaryote enzymes of the GH2 family, although two long insertions in domains 2 and 3 are unique and related to oligomerization and specificity. The tetrameric enzyme is a dimer of dimers, with higher dissociation energy for the dimers than for its assembly. Two active centers are located at the interface within each dimer in a narrow channel. The insertion at domain 3 protrudes into this channel and makes putative links with the aglycone moiety of docked lactose. In spite of common structural features related to function, the determinants of the reaction mechanism proposed for Escherichia coli ß-galactosidase are not found in the active site of the K. lactis enzyme. This is the first X-ray crystal structure for a ß-galactosidase used in food processing.


Assuntos
Proteínas Fúngicas/química , Galactose/química , Kluyveromyces/enzimologia , beta-Galactosidase/química , Domínio Catalítico , Complexos de Coordenação/química , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Especificidade por Substrato , Propriedades de Superfície
4.
Appl Microbiol Biotechnol ; 94(1): 173-84, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22189861

RESUMO

In Saccharomyces cerevisiae, adaptation to hypoxia/anaerobiosis requires the transcriptional induction or derepression of multiple genes organized in regulons controlled by specific transcriptional regulators. Ixr1p is a transcriptional regulatory factor that causes aerobic repression of several hypoxic genes (COX5B, TIR1, and HEM13) and also the activation of HEM13 during hypoxic growth. Analysis of the transcriptome of the wild-type strain BY4741 and its isogenic derivative Δixr1, grown in aerobic and hypoxic conditions, reveals differential regulation of genes related not only to the hypoxic and oxidative stress responses but also to the re-adaptation of catabolic and anabolic fluxes in response to oxygen limitation. The function of Ixr1p in the transcriptional regulation of genes from the sulfate assimilation pathway and other pathways producing α-keto acids is of biotechnological importance for industries based on yeast-derived fermentation products.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Estresse Oxidativo , Oxigênio/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica
5.
Eukaryot Cell ; 10(10): 1331-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21821717

RESUMO

Two proteins that differ at the N terminus (l-KlCpo and s-KlCpo) are derived from KlHEM13, a single-copy-number gene in the haploid genome of Kluyveromyces lactis. Two transcriptional start site (tss) pools are detectable using primer extension, and their selection is heme dependent. One of these tss pools is located 5' of the first translation initiation codon (TIC) in the open reading frame of KlHEM13, while the other is located between the first and second TICs. In terms of functional significance, only s-KlCpo complements the heme deficiency caused by the Δhem13 deletion in K. lactis. Data obtained from immune detection in subcellular fractions, directed mutagenesis, chromatin immunoprecipitation (ChIP) assays, and the functional relevance of ΔKlhem13 deletion for KlHEM13 promoter activity suggest that l-KlCpo regulates KlHEM13 transcription. A hypothetical model of the evolutionary origins and coexistence of these two proteins in K. lactis is discussed.


Assuntos
Coproporfirinogênio Oxidase/genética , Proteínas Fúngicas/genética , Kluyveromyces/enzimologia , Kluyveromyces/genética , Sequência de Aminoácidos , Sequência de Bases , Coproporfirinogênio Oxidase/química , Coproporfirinogênio Oxidase/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Kluyveromyces/química , Dados de Sequência Molecular , Fases de Leitura Aberta , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Sítio de Iniciação de Transcrição , Transcrição Gênica
6.
Can J Microbiol ; 58(2): 184-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22260231

RESUMO

The yeast Saccharomyces cerevisiae has been previously used as a model eukaryotic system to identify genes related to drug resistance. Deletion of the IXR1 gene increases resistance to cisplatin, and deletion of the SKY1 gene increases resistance to cisplatin and spermine. Three S. cerevisiae strains and their derivatives, carrying single Δixr1 and Δsky1 and double Δixr1Δsky1 deletions, were compared in terms of resistance against these compounds. We found that the effects of these deletions are highly dependent on the genetic background of the selected strains. These results are valuable in the selection of yeast strains to be used in genetic screenings of compounds with putative pharmacological interest.


Assuntos
Farmacorresistência Fúngica/genética , Saccharomyces cerevisiae/fisiologia , Antineoplásicos/farmacologia , Cisplatino/farmacologia , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Espermina/farmacologia
7.
Biotechnol Lett ; 34(12): 2161-73, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23007444

RESUMO

Recent advances in the knowledge of molecular mechanisms that control the adaptation to low oxygen levels in yeast and their biotechnological applications, including bioproduct synthesis, such as ethanol, glutathione or recombinant proteins, as well as pathogenic virulence, are reviewed. Possible pathways and target genes, which might be of particular interest for the improvement of biotechnological applications, are evaluated.


Assuntos
Biotecnologia/métodos , Oxigênio/metabolismo , Estresse Fisiológico , Leveduras/fisiologia , Anaerobiose , Etanol/metabolismo , Regulação Fúngica da Expressão Gênica , Glutationa/metabolismo , Proteínas Recombinantes/metabolismo , Fatores de Virulência/metabolismo , Leveduras/metabolismo
8.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 3): 297-300, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20208165

RESUMO

Beta-galactosidase from Kluyveromyces lactis catalyses the hydrolysis of the beta-galactosidic linkage in lactose. Owing to its many industrial applications, the biotechnological potential of this enzyme is substantial. This protein has been expressed in yeast and purified for crystallization trials. However, optimization of the best crystallization conditions yielded crystals with poor diffraction quality that precluded further structural studies. Finally, the crystal quality was improved using the streak-seeding technique and a complete diffraction data set was collected at 2.8 A resolution.


Assuntos
Kluyveromyces/enzimologia , beta-Galactosidase/química , Cristalização , Cristalografia por Raios X
9.
Microb Cell Fact ; 8: 46, 2009 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-19715615

RESUMO

A lot of studies have been carried out on Saccharomyces cerevisiae, an yeast with a predominant fermentative metabolism under aerobic conditions, which allows exploring the complex response induced by oxidative stress. S. cerevisiae is considered a eukaryote model for these studies. We propose Kluyveromyces lactis as a good alternative model to analyse variants in the oxidative stress response, since the respiratory metabolism in this yeast is predominant under aerobic conditions and it shows other important differences with S. cerevisiae in catabolic repression and carbohydrate utilization. The knowledge of oxidative stress response in K. lactis is still a developing field. In this article, we summarize the state of the art derived from experimental approaches and we provide a global vision on the characteristics of the putative K. lactis components of the oxidative stress response pathway, inferred from their sequence homology with the S. cerevisiae counterparts. Since K. lactis is also a well-established alternative host for industrial production of native enzymes and heterologous proteins, relevant differences in the oxidative stress response pathway and their potential in biotechnological uses of this yeast are also reviewed.

10.
Sci Rep ; 8(1): 3090, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449612

RESUMO

Ixr1 is a Saccharomyces cerevisiae HMGB protein that regulates the hypoxic regulon and also controls the expression of other genes involved in the oxidative stress response or re-adaptation of catabolic and anabolic fluxes when oxygen is limiting. Ixr1 also binds with high affinity to cisplatin-DNA adducts and modulates DNA repair. The influence of Ixr1 on transcription in the absence or presence of cisplatin has been analyzed in this work. Ixr1 regulates other transcriptional factors that respond to nutrient availability or extracellular and intracellular stress stimuli, some controlled by the TOR pathway and PKA signaling. Ixr1 controls transcription of ribosomal RNAs and genes encoding ribosomal proteins or involved in ribosome assembly. qPCR, ChIP, and 18S and 25S rRNAs measurement have confirmed this function. Ixr1 binds directly to several promoters of genes related to rRNA transcription and ribosome biogenesis. Cisplatin treatment mimics the effect of IXR1 deletion on rRNA and ribosomal gene transcription, and prevents Ixr1 binding to specific promoters related to these processes.


Assuntos
Cisplatino/farmacologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Ribossomos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Reparo do DNA , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
11.
Biochim Biophys Acta ; 1757(11): 1476-84, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17052684

RESUMO

The mitochondria of the respiratory yeast Kluyveromyces lactis are able to reoxidize cytosolic NADPH. Previously, we characterized an external alternative dehydrogenase, KlNde1p, having this activity. We now characterize the second external alternative dehydrogenase of K. lactis mitochondria, KlNde2p. We examined its role in cytosolic NADPH reoxidation by studying heterologous expression of KlNDE2 in Saccharomyces cerevisiae mutants and by constructing Deltaklnde1 and Deltaklnde2 mutants. KlNde2p uses NADH or NADPH as substrates, its activity in isolated mitochondria is not regulated by exogenously added calcium and it is not down-regulated when the cells grow in glucose versus lactate. KlNde2p shows lower affinity for NADPH than KlNde1p. Both enzymes show similar pH optimum.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Kluyveromyces/enzimologia , Mitocôndrias/enzimologia , Oxirredutases/química , Sequência de Aminoácidos , Cálcio/metabolismo , Clonagem Molecular , Citosol/enzimologia , Citosol/metabolismo , Concentração de Íons de Hidrogênio , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Mutação , Oxirredutases/metabolismo , Consumo de Oxigênio , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
12.
J Biotechnol ; 109(1-2): 131-7, 2004 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15063621

RESUMO

Secretion of the heterologous Kluyveromyces lactis beta-galactosidase into culture medium by several Saccharomyces cerevisiae osmotic-remedial thermosensitive-autolytic mutants was assayed and proved that new metabolic abilities were conferred since the constructed strains were able to grow in lactose-containing media. Cell growth became independent of a lactose-uptake mechanism. Higher levels of extra-cellular and intra-cellular beta-galactosidase production, lactose consumption and growth were obtained with the LHDP1 strain, showing a thermosensitive-autolytic phenotype as well as being peptidase-defective. The recombinant strain LHDP1 presented the highest beta-galactosidase yields from biomass and the lowest ethanol levels from lactose. This strain is effective for the heterologous production and release of K. lactis beta-galactosidase into the extra-cellular medium after osmotic shock.


Assuntos
Kluyveromyces/enzimologia , Proteínas Recombinantes/biossíntese , Saccharomyces cerevisiae/genética , beta-Galactosidase/biossíntese , Queijo/microbiologia , Etanol/metabolismo , Engenharia Genética , Kluyveromyces/genética , Lactose/metabolismo , Osmose , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/metabolismo , beta-Galactosidase/genética
13.
Oxid Med Cell Longev ; 2012: 634674, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22928082

RESUMO

Studies about hypoxia-induced oxidative stress in human health disorders take advantage from the use of unicellular eukaryote models. A widely extended model is the fermentative yeast Saccharomyces cerevisiae. In this paper, we describe an overview of the molecular mechanisms induced by a decrease in oxygen availability and their interrelationship with the oxidative stress response in yeast. We focus on the differential characteristics between S. cerevisiae and the respiratory yeast Kluyveromyces lactis, a complementary emerging model, in reference to multicellular eukaryotes.


Assuntos
Células/imunologia , Kluyveromyces/citologia , Kluyveromyces/imunologia , Modelos Biológicos , Estresse Oxidativo/imunologia , Anaerobiose/imunologia , Animais , Humanos , Viabilidade Microbiana
14.
J Biotechnol ; 145(3): 226-32, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19961884

RESUMO

In this work, a system for high-level secretion by Saccharomyces cerevisiae of the Thermus thermophilus HB27 putative esterase YP_004875.1 was constructed. The recombinant protein was purified and partially characterised. Its lipolytic activity dropped abruptly when the acyl chain length of the substrate increased from 12 to 18 carbon atoms, and variation of the reaction rate as function of substrate concentration followed Michaelis-Menten kinetics. These results suggested that the enzyme was an esterase. The recombinant enzyme was N-glycosylated and both the glycosylated and non-glycosylated forms showed activity. Compared to the native enzyme, thermal stability (half-life of 4.3h at 85 degrees C) was higher, optimum temperature (40 degrees C) was lower and optimum pH (7.5-8.5) was similar. These characteristics support potential biotechnological applications of the recombinant esterase.


Assuntos
Esterases/metabolismo , Saccharomyces cerevisiae/metabolismo , Thermus thermophilus/enzimologia , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Esterases/isolamento & purificação , Vetores Genéticos/genética , Concentração de Íons de Hidrogênio , Cinética , Lipólise , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Regressão , Saccharomyces cerevisiae/crescimento & desenvolvimento , Especificidade por Substrato , Temperatura
15.
FEMS Yeast Res ; 7(5): 702-14, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17425672

RESUMO

Genome duplication, after the divergence of Saccharomyces cerevisiae from Kluyveromyces lactis along evolution, has been proposed as a mechanism of yeast evolution from strict aerobics, such as Candida albicans, to facultatives/fermentatives, such as S. cerevisiae. This feature, together with the preponderance of respiration and the use of the pentose phosphate pathway in glucose utilization, makes K. lactis a model yeast for studies related to carbon and oxygen metabolism. In this work, and based on the knowledge of the sequence of the genome of K. lactis, obtained by the Génolevures project, we have constructed DNA arrays from K. lactis including a limited amount of selected probes. They are related to the aerobiosis-hypoxia adaptation and to the oxidative stress response, and have been used to test changes in mRNA levels in response to hypoxia and oxidative stress generated by H(2)O(2). The study was carried out in both wild-type and rag2 mutant K. lactis strains in which glycolysis is blocked at the phosphoglucose isomerase step. This approach is the first analysis carried out in K. lactis for the majority of the genes selected.


Assuntos
Regulação Fúngica da Expressão Gênica , Resposta ao Choque Térmico , Hipóxia , Kluyveromyces/fisiologia , Estresse Oxidativo , RNA Mensageiro/metabolismo , Meios de Cultura , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Kluyveromyces/genética , Kluyveromyces/crescimento & desenvolvimento , Kluyveromyces/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteoma , RNA Mensageiro/genética , Transcrição Gênica
16.
Can J Microbiol ; 51(3): 241-9, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15920622

RESUMO

The KlHEM13 gene of Kluyveromyces lactis encoding the coproporphyrinogen oxidase (EC 1.3.3.3), an oxygen-requiring enzyme that catalyzes the sixth step of heme biosynthesis, was cloned and functionally characterized. The coding and upstream regions of KlHEM13 were analyzed and the putative cis regulatory elements were discussed in relation to the mechanisms of regulation of this hypoxic gene in K. lactis.


Assuntos
Coproporfirinogênio Oxidase/genética , Coproporfirinogênio Oxidase/metabolismo , Regulação Fúngica da Expressão Gênica , Kluyveromyces/enzimologia , Oxigênio/farmacologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Coproporfirinogênio Oxidase/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Heme/biossíntese , Kluyveromyces/genética , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Alinhamento de Sequência , Análise de Sequência de DNA
17.
Genome ; 47(5): 970-8, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15499411

RESUMO

The use of heterologous DNA arrays from Saccharomyces cerevisiae has been tested and revealed as a suitable tool to compare the transcriptomes of S. cerevisiae and Kluyveromyces lactis, two yeasts with notable differences in their respirofermentative metabolism. The arrays have also been applied to study the changes in the K. lactis transcriptome owing to mutation in the RAG2 gene coding for the glycolytic enzyme phosphoglucose isomerase. Comparison of the rag2 mutant growing in 2% glucose versus 2% fructose has been used as a model to elucidate the importance of transcriptional regulation of metabolic routes, which may be used to reoxidize the NADPH produced in the pentose phosphate pathway. At this transcriptional level, routes related to the oxidative stress response become an interesting alternative for NADPH use.


Assuntos
Genoma Fúngico , Glucose-6-Fosfato Isomerase/genética , Kluyveromyces/genética , Mutação/genética , NADP/metabolismo , Frutose/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Glucose/metabolismo , Glucose-6-Fosfato Isomerase/metabolismo , Kluyveromyces/enzimologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
18.
Can J Microbiol ; 50(8): 645-52, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15467790

RESUMO

Cloning and transcriptional regulation of the KlFBA1 gene that codes for the class II fructose-1,6-bisphosphate aldolase of the yeast Kluyveromyces lactis are described. KlFBA1 mRNA diminishes transiently during the shift from hypoxic to fully aerobic conditions and increases in the reversal shift. This regulation is mediated by heme since expression was higher in a mutant defective in heme biosynthesis. KlFBA1 transcription is not induced by calcium-shortage, low temperature, or at stationary phase. These data suggest that KlFBA1 plays a role in the balance between oxidative and fermentative metabolism and that this gene is differentially regulated in K. lactis and Saccharomyces cerevisiae, i.e., a respiratory vs. fermentative yeast.


Assuntos
Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/isolamento & purificação , Regulação Fúngica da Expressão Gênica , Kluyveromyces/enzimologia , Transcrição Gênica , Clonagem Molecular , Meios de Cultura , Frutose-Bifosfato Aldolase/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Heme/farmacologia , Kluyveromyces/genética , Kluyveromyces/crescimento & desenvolvimento , Oxigênio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA