Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Environ Sci Technol ; 57(1): 255-265, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36525634

RESUMO

We investigated the aqueous solubility and thermodynamic properties of two meta-autunite group uranyl arsenate solids (UAs). The measured solubility products (log Ksp) obtained in dissolution and precipitation experiments at equilibrium pH 2 and 3 for NaUAs and KUAs ranged from -23.50 to -22.96 and -23.87 to -23.38, respectively. The secondary phases (UO2)(H2AsO4)2(H2O)(s) and trögerite, (UO2)3(AsO4)2·12H2O(s), were identified by powder X-ray diffraction in the reacted solids of KUA precipitation experiments (pH 2) and NaUAs dissolution and precipitation experiments (pH 3), respectively. The identification of these secondary phases in reacted solids suggest that H3O+ co-occurring with Na or K in the interlayer region can influence the solubilities of uranyl arsenate solids. The standard-state enthalpy of formation from the elements (ΔHf-el) of NaUAs is -3025 ± 22 kJ mol-1 and for KUAs is -3000 ± 28 kJ mol-1 derived from measurements by drop solution calorimetry, consistent with values reported in other studies for uranyl phosphate solids. This work provides novel thermodynamic information for reactive transport models to interpret and predict the influence of uranyl arsenate solids on soluble concentrations of U and As in contaminated waters affected by mining legacy and other anthropogenic activities.


Assuntos
Arseniatos , Solubilidade , Termodinâmica
2.
Environ Sci Technol ; 57(49): 20881-20892, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38019567

RESUMO

The co-occurrence of uranyl and arsenate in contaminated water caused by natural processes and mining is a concern for impacted communities, including in Native American lands in the U.S. Southwest. We investigated the simultaneous removal of aqueous uranyl and arsenate after the reaction with limestone and precipitated hydroxyapatite (HAp, Ca10(PO4)6(OH)2). In benchtop experiments with an initial pH of 3.0 and initial concentrations of 1 mM U and As, uranyl and arsenate coprecipitated in the presence of 1 g L-1 limestone. However, related experiments initiated under circumneutral pH conditions showed that uranyl and arsenate remained soluble. Upon addition of 1 mM PO43- and 3 mM Ca2+ in solution (initial concentration of 0.05 mM U and As) resulted in the rapid removal of over 97% of U via Ca-U-P precipitation. In experiments with 2 mM PO43- and 10 mM Ca2+ at pH rising from 7.0 to 11.0, aqueous concentrations of As decreased (between 30 and 98%) circa pH 9. HAp precipitation in solids was confirmed by powder X-ray diffraction and scanning electron microscopy/energy dispersive X-ray. Electron microprobe analysis indicated U was coprecipitated with Ca and P, while As was mainly immobilized through HAp adsorption. The results indicate that natural materials, such as HAp and limestone, can effectively remove uranyl and arsenate mixtures.


Assuntos
Arseniatos , Urânio , Carbonato de Cálcio , Concentração de Íons de Hidrogênio , Adsorção , Água
3.
Chem Geol ; 6362023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37601980

RESUMO

We integrated aqueous chemistry analyses with geochemical modeling to determine the kinetics of the dissolution of Na and K uranyl arsenate solids (UAs(s)) at acidic pH. Improving our understanding of how UAs(s) dissolve is essential to predict transport of U and As, such as in acid mine drainage. At pH 2, Na0.48H0.52(UO2)(AsO4)(H2O)2.5(s) (NaUAs(s)) and K0.9H0.1(UO2)(AsO4)(H2O)2.5(s) (KUAs(s)) both dissolve with a rate constant of 3.2 × 10-7 mol m-2 s-1, which is faster than analogous uranyl phosphate solids. At pH 3, NaUAs(s) (6.3 × 10-8 mol m-2 s-1) and KUAs(s) (2.0 × 10-8 mol m-2 s-1) have smaller rate constants. Steady-state aqueous concentrations of U and As are similarly reached within the first several hours of reaction progress. This study provides dissolution rate constants for UAs(s), which may be integrated into reactive transport models for risk assessment and remediation of U and As contaminated waters.

4.
Environ Eng Sci ; 40(11): 562-573, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37981952

RESUMO

We studied the co-occurrence of microplastics (MPs) and metals in field sites and further investigated their interfacial interaction in controlled laboratory conditions. First, we detected MPs in freshwater co-occurring with metals in rural and urban areas in New Mexico. Automated particle counting and fluorescence microscopy indicated that particles in field samples ranged from 7 to 149 particles/L. The urban location contained the highest count of confirmed MPs, including polyester, cellophane, and rayon, as indicated by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy analyses. Metal analyses using inductively coupled plasma (ICP) revealed that bodies of water in a rural site affected by mining legacy contained up to 332.8 µg/L of U, while all bodies of water contained As concentrations below 11.4 µg/L. These field findings motivated experiments in laboratory conditions, reacting MPs with 0.02-0.2 mM of As or U solutions at acidic and neutral pH with poly(methyl-methacrylate), polyethylene, and polystyrene MPs. In these experiments, As did not interact with any of the MPs tested at pH 3 and pH 7, nor U with any MPs at pH 3. Experiments supplied with U and MPs at pH 7 indicated that MPs served as substrate surface for the adsorption and nucleation of U precipitates. Chemical speciation modeling and microscopy analyses (i.e., Transmission Electron Microscopy [TEM]) suggest that U precipitates resemble sodium-compreignacite and schoepite. These findings have relevant implications to further understanding the occurrence and interfacial interaction of MPs and metals in freshwater.

5.
Environ Sci Technol ; 55(23): 16246-16256, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34797046

RESUMO

We investigated interfacial reactions of U(VI) in the presence of Suwannee River natural organic matter (NOM) at acidic and neutral pH. Laboratory batch experiments show that the adsorption and precipitation of U(VI) in the presence of NOM occur at pH 2 and pH 4, while the aqueous complexation of U by dissolved organic matter is favored at pH 7, preventing its precipitation. Spectroscopic analyses indicate that U(VI) is mainly adsorbed to the particulate organic matter at pH 4. However, U(VI)-bearing ultrafine to nanocrystalline solids were identified at pH 4 by electron microscopy. This study shows the promotion of U(VI) precipitation by NOM at low pH which may be relevant to the formation of mineralized deposits, radioactive waste repositories, wetlands, and other U- and organic-rich environmental systems.


Assuntos
Resíduos Radioativos , Urânio , Adsorção , Matéria Orgânica Dissolvida , Concentração de Íons de Hidrogênio , Urânio/análise
6.
Environ Sci Technol ; 54(7): 3979-3987, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32176846

RESUMO

Natural or anthropogenic processes can increase the concentration of uranium (U) and arsenic (As) above the maximum contaminant levels in water sources. Bicarbonate and calcium (Ca) can have major impacts on U speciation and can affect the reactivity between U and As. We therefore investigated the reactivity of aqueous U and As mixtures with bicarbonate and Ca for acidic and neutral pH conditions. In experiments performed with 1 mM U and As mixtures, 10 mM Ca, and without added bicarbonate (pCO2 = 3.5), aqueous U decreased to <0.25 mM at pH 3 and 7. Aqueous As decreased the most at pH 3 (∼0.125 mM). Experiments initiated with 0.005 mM As and U showed similar trends. X-ray spectroscopy (i.e., XAS and EDX) and diffraction indicated that U-As-Ca- and U-Ca-bearing solids resemble uranospinite [Ca(UO2)2(AsO4)2·10H2O] and becquerelite [Ca(UO2)6O4(OH)6·8(H2O)]. These findings suggest that U-As-Ca-bearing solids formed in mixed solutions are stable at pH 3. However, the dissolution of U-As-Ca and U-Ca-bearing solids at pH 7 was observed in reactors containing 10 mM bicarbonate and Ca, suggesting a kinetic reaction of aqueous uranyl-calcium-carbonate complexation. Our study provides new insights regarding U and As mobilization for risk assessment and remediation strategies.


Assuntos
Arsênio , Urânio , Bicarbonatos , Cálcio , Concentração de Íons de Hidrogênio
7.
Environ Sci Technol ; 53(10): 5758-5767, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30998849

RESUMO

We investigated the functional group chemistry of natural organic matter (NOM) associated with both U(IV) and U(VI) in solids from mineralized deposits exposed to oxidizing conditions from the Jackpile Mine, Laguna Pueblo, NM. The uranium (U) content in unreacted samples was 0.44-2.6% by weight determined by X-ray fluorescence. In spite of prolonged exposure to ambient oxidizing conditions, ≈49% of U(IV) and ≈51% of U(VI) were identified on U LIII edge extended X-ray absorption fine structure spectra. Loss on ignition and thermogravimetric analyses identified from 13% to 44% of NOM in the samples. Carbonyl, phenolic, and carboxylic functional groups in the unreacted samples were identified by fitting of high-resolution X-ray photoelectron spectroscopy (XPS) C 1s and O 1s spectra. Peaks corresponding to phenolic and carbonyl functional groups had intensities higher than those corresponding to carboxylic groups in samples from the supernatant from batch extractions conducted at pH 13, 7, and 2. U(IV) and U(VI) species were detected in the supernatant after batch extractions conducted under oxidizing conditions by fitting of high-resolution XPS U 4f spectra. The outcomes from this study highlight the importance of the influence of pH on the organic functional group chemistry and U speciation in mineralized deposits.


Assuntos
Urânio , New Mexico , Oxirredução , Espectroscopia Fotoeletrônica
8.
Biotechnol Bioeng ; 114(5): 951-960, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27888663

RESUMO

Anaerobic digestion (AD) of lignocellulosic materials is commonly limited by the hydrolysis step. Unlike unprocessed lignocellulosic materials, paper and paper board (PPB) are processed for their fabrication. Such modifications may affect their methane yields and methane production rates. Previous studies have investigated the correlation between lignin and biomethane yields of unprocessed lignocellulosic materials; nevertheless, there is limited knowledge regarding the relationship between the AD kinetic parameters and composition of PPB. This study evaluated correlations of methane yields and Monod and Gompertz kinetic parameters with structural carbohydrates, lignin, and ash concentration of five types of PPBs. All components were used as single and combined independent variables in linear regressions to predict methane yield, maximum specific methanogenic activity (SMAmax ), saturation constant (Ks ), and lag phase (λ). Additionally, microbial community profiles were obtained for each PPB assay. Results showed methane yields ranging from 69.2 ± 8.61 to 97.2 ± 2.29% of PPB substrates provided. The highest correlation coefficients were obtained for SMAmax as function of hemicellulose/(lignin + ash) (R2 = 0.86) and for λ as a function of lignin + cellulose (R2 = 0.85). All other parameters exhibited weaker correlations (R2 ≤ 0.77). Relative abundance analyses revealed no major changes in the community profile for each of the substrates evaluated. The overall findings of this study are: (i) combinations of structural carbohydrates, lignin, and ash used as ratios of degradable to either non-degradable or slowly degradable fractions predict AD kinetic parameters of PPB materials better than single independent variables; and (ii) other components added during their fabrication may also influence both methane yield and kinetic parameters. Biotechnol. Bioeng. 2017;114: 951-960. © 2016 Wiley Periodicals, Inc.


Assuntos
Reatores Biológicos/microbiologia , Lignina/análise , Lignina/metabolismo , Papel , Esgotos/microbiologia , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Celulose/análise , Celulose/química , Celulose/metabolismo , Lignina/química , Modelos Lineares , Metano/metabolismo
9.
Res Sq ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38765967

RESUMO

Rising global concentrations of environmental micro- and nanoplastics (MNPs) drive concerns for human exposure and health outcomes. Applying pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) methods to isolate and quantify MNPs from human samples, we compared MNP accumulation in kidneys, livers, and brains. Autopsy samples from the Office of the Medical Investigator in Albuquerque, NM, collected in 2016 and in 2024, were digested for Py-GC/MS analysis of 12 polymers. Brains exhibited higher concentrations of MNPs than liver or kidney samples. All organs exhibited significant increases from 2016 to 2024. Polyethylene was the predominant polymer; the relative proportion of polyethylene MNPs was greater in brain samples than in liver or kidney. Transmission electron microscopy verified the nanoscale nature of isolated particles, which largely appeared to be aged, shard-like plastics remnants across a wide range of sizes. Results demonstrate that MNPs are selectively accumulated into the human brain and concentrations are rising over time.

10.
Toxicol Sci ; 199(1): 81-88, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38366932

RESUMO

The exponential increase in global plastic usage has led to the emergence of nano- and microplastic (NMP) pollution as a pressing environmental issue due to its implications for human and other mammalian health. We have developed methodologies to extract solid materials from human tissue samples by saponification and ultracentrifugation, allowing for highly specific and quantitative analysis of plastics by pyrolysis-gas chromatography and mass spectrometry (Py-GC-MS). As a benchmark, placenta tissue samples were analyzed using fluorescence microscopy and automated particle count, which demonstrated the presence of >1-micron particles and fibers, but not nano-sized plastic particles. Analyses of the samples (n = 10) using attenuated total reflectance-Fourier transform infrared spectroscopy indicated presence of rayon, polystyrene, polyethylene, and unclassified plastic particles. By contrast, among 62 placenta samples, Py-GC-MS revealed that microplastics were present in all participants' placentae, with concentrations ranging widely from 6.5 to 685 µg NMPs per gram of placental tissue, averaging 126.8 ± 147.5 µg/g (mean±SD). Polyethylene was the most prevalent polymer, accounting for 54% of total NMPs and consistently found in nearly all samples (mean 68.8 ± 93.2 µg/g placenta). Polyvinyl chloride and nylon each represented approximately 10% of the NMPs by weight, with the remaining 26% of the composition represented by 9 other polymers. Together, these data demonstrate advancements in the unbiased quantitative resolution of Py-GC-MS applied to the identification and quantification of NMP species at the maternal-fetal interface. This method, paired with clinical metadata, will be pivotal to evaluating potential impacts of NMPs on adverse pregnancy outcomes.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Microplásticos , Placenta , Humanos , Feminino , Placenta/química , Placenta/metabolismo , Gravidez , Microplásticos/análise , Pirólise , Monitoramento Ambiental/métodos , Adulto
11.
Sci Total Environ ; 926: 171834, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521258

RESUMO

The co-occurrence of microplastics (MPs) with potentially toxic metals in the environment stresses the need to address their physicochemical interactions and the potential ecological and human health implications. Here, we investigated the reaction of aqueous U with agricultural soil and high-density polyethylene (HDPE) through the integration of batch experiments, microscopy, and spectroscopy. The aqueous initial concentration of U (100 µM) decreased between 98.6 and 99.2 % at pH 5 and between 86.2 and 98.9 % at pH 7.5 following the first half hour of reaction with 10 g of soil. In similar experimental conditions but with added HDPE, aqueous U decreased between 98.6 and 99.7 % at pH 5 and between 76.1 and 95.2 % at pH 7.5, suggesting that HDPE modified the accumulation of U in soil as a function of pH. Uranium-bearing precipitates on the cracked surface of HDPE were identified by SEM/EDS after two weeks of agitation in water at both pH 5 and 7.5. Accumulation of U on the near-surface region of reacted HDPE was confirmed by XPS. Our findings suggest that the precipitation of U was facilitated by the weathering of the surface of HDPE. These results provide insights about surface-mediated reactions of aqueous metals with MPs, contributing relevant information about the mobility of metals and MPs at co-contaminated agricultural sites.

12.
Environ Health Perspect ; 132(4): 47005, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598326

RESUMO

BACKGROUND: Global plastic use has consistently increased over the past century with several different types of plastics now being produced. Much of these plastics end up in oceans or landfills leading to a substantial accumulation of plastics in the environment. Plastic debris slowly degrades into microplastics (MPs) that can ultimately be inhaled or ingested by both animals and humans. A growing body of evidence indicates that MPs can cross the gut barrier and enter into the lymphatic and systemic circulation leading to accumulation in tissues such as the lungs, liver, kidney, and brain. The impacts of mixed MPs exposure on tissue function through metabolism remains largely unexplored. OBJECTIVES: This study aims to investigate the impacts of polymer microspheres on tissue metabolism in mice by assessing the microspheres ability to translocate across the gut barrier and enter into systemic circulation. Specifically, we wanted to examine microsphere accumulation in different organ systems, identify concentration-dependent metabolic changes, and evaluate the effects of mixed microsphere exposures on health outcomes. METHODS: To investigate the impact of ingested microspheres on target metabolic pathways, mice were exposed to either polystyrene (5µm) microspheres or a mixture of polymer microspheres consisting of polystyrene (5µm), polyethylene (1-4µm), and the biodegradability and biocompatible plastic, poly-(lactic-co-glycolic acid) (5µm). Exposures were performed twice a week for 4 weeks at a concentration of either 0, 2, or 4mg/week via oral gastric gavage. Tissues were collected to examine microsphere ingress and changes in metabolites. RESULTS: In mice that ingested microspheres, we detected polystyrene microspheres in distant tissues including the brain, liver, and kidney. Additionally, we report on the metabolic differences that occurred in the colon, liver, and brain, which showed differential responses that were dependent on concentration and type of microsphere exposure. DISCUSSION: This study uses a mouse model to provide critical insight into the potential health implications of the pervasive issue of plastic pollution. These findings demonstrate that orally consumed polystyrene or mixed polymer microspheres can accumulate in tissues such as the brain, liver, and kidney. Furthermore, this study highlights concentration-dependent and polymer type-specific metabolic changes in the colon, liver, and brain after plastic microsphere exposure. These results underline the mobility within and between biological tissues of MPs after exposure and emphasize the importance of understanding their metabolic impact. https://doi.org/10.1289/EHP13435.


Assuntos
Poliestirenos , Poluentes Químicos da Água , Humanos , Animais , Camundongos , Microesferas , Plásticos , Distribuição Tecidual , Microplásticos , Poluentes Químicos da Água/análise
13.
Appl Microbiol Biotechnol ; 97(6): 2671-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22565330

RESUMO

The aim of this study was to elucidate the kinetic constraints during the redox biotransformation of the azo dye, Reactive Red 2 (RR2), and carbon tetrachloride (CT) mediated by soluble humic acids (HAs) and immobilized humic acids (HAi), as well as by the quinoid model compounds, anthraquinone-2,6-disulfonate (AQDS) and 1,2-naphthoquinone-4-sulfonate (NQS). The microbial reduction of both HAs and HAi by anaerobic granular sludge (AGS) was the rate-limiting step during decolorization of RR2 since the reduction of RR2 by reduced HAi proceeded at more than three orders of magnitute faster than the electron-transferring rate observed during the microbial reduction of HAi by AGS. Similarly, the reduction of RR2 by reduced AQDS proceeded 1.6- and 1.9-fold faster than the microbial reduction of AQDS by AGS when this redox mediator (RM) was supplied in soluble and immobilized form, respectively. In contrast, the reduction of NQS by AGS occurred 1.6- and 19.2-fold faster than the chemical reduction of RR2 by reduced NQS when this RM was supplied in soluble and immobilized form, respectively. The microbial reduction of HAs and HAi by a humus-reducing consortium proceeded 1,400- and 790-fold faster than the transfer of electrons from reduced HAs and HAi, respectively, to achieve the reductive dechlorination of CT to chloroform. Overall, the present study provides elucidation on the rate-limiting steps involved in the redox biotransformation of priority pollutants mediated by both HAs and HAi and offers technical suggestions to overcome the kinetic restrictions identified in the redox reactions evaluated.


Assuntos
Tetracloreto de Carbono/metabolismo , Substâncias Húmicas , Consórcios Microbianos , Naftalenossulfonatos/metabolismo , Esgotos/microbiologia , Triazinas/metabolismo , Antraquinonas/metabolismo , Biotransformação , Naftoquinonas/metabolismo , Oxirredução , Ácidos Sulfônicos/metabolismo
14.
Toxicol Sci ; 193(1): 90-102, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-36881996

RESUMO

Microplastics represent an emerging environmental contaminant, with large gaps in our understanding of human health impacts. Furthermore, environmental factors may modify the plastic chemistry, further altering the toxic potency. Ultraviolet (UV) light is one such unavoidable factor for airborne microplastic particulates and a known modifier of polystyrene surface chemistry. As an experimental model, we aged commercially available polystyrene microspheres for 5 weeks with UV radiation, then compared the cellular responses in A549 lung cells with both pristine and irradiated particulates. Photoaging altered the surface morphology of irradiated microspheres and increased the intensities of polar groups on the near-surface region of the particles as indicated by scanning electron microscopy and by fitting of high-resolution X-ray photoelectron spectroscopy C 1s spectra, respectively. Even at low concentrations (1-30 µg/ml), photoaged microspheres at 1 and 5 µm in diameter exerted more pronounced biological responses in the A549 cells than was caused by pristine microspheres. High-content imaging analysis revealed S and G2 cell cycle accumulation and morphological changes, which were also more pronounced in A549 cells treated with photoaged microspheres, and further influenced by the size, dose, and time of exposures. Polystyrene microspheres reduced monolayer barrier integrity and slowed regrowth in a wound healing assay in a manner dependent on dose, photoaging, and size of the microsphere. UV-photoaging generally enhanced the toxicity of polystyrene microspheres in A549 cells. Understanding the influence of weathering and environmental aging, along with size, shape, and chemistry, on microplastics biocompatibility may be an essential consideration for incorporation of different plastics in products.


Assuntos
Poluentes Químicos da Água , Humanos , Pulmão , Microplásticos/toxicidade , Microesferas , Estresse Oxidativo , Plásticos/análise , Poliestirenos/toxicidade , Poliestirenos/análise , Poliestirenos/química , Poluentes Químicos da Água/toxicidade
15.
bioRxiv ; 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37398080

RESUMO

Global plastic use has consistently increased over the past century with several different types of plastics now being produced. Much of these plastics end up in oceans or landfills leading to a substantial accumulation of plastics in the environment. Plastic debris slowly degrades into microplastics (MPs) that can ultimately be inhaled or ingested by both animals and humans. A growing body of evidence indicates that MPs can cross the gut barrier and enter into the lymphatic and systemic circulation leading to accumulation in tissues such as the lungs, liver, kidney, and brain. The impacts of mixed MPs exposure on tissue function through metabolism remains largely unexplored. To investigate the impact of ingested MPs on target metabolomic pathways, mice were subjected to either polystyrene microspheres or a mixed plastics (5 µm) exposure consisting of polystyrene, polyethylene and the biodegradability and biocompatible plastic, poly-(lactic-co-glycolic acid). Exposures were performed twice a week for four weeks at a dose of either 0, 2, or 4 mg/week via oral gastric gavage. Our findings demonstrate that, in mice, ingested MPs can pass through the gut barrier, be translocated through the systemic circulation, and accumulate in distant tissues including the brain, liver, and kidney. Additionally, we report on the metabolomic changes that occur in the colon, liver and brain which show differential responses that are dependent on dose and type of MPs exposure. Lastly, our study provides proof of concept for identifying metabolomic alterations associated with MPs exposure and adds insight into the potential health risks that mixed MPs contamination may pose to humans.

16.
ACS Earth Space Chem ; 6(7): 1644-1654, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-36238447

RESUMO

We integrated aqueous chemistry, spectroscopy, and microbiology techniques to identify chemical and microbial processes affecting the release of arsenic (As), iron (Fe), and manganese (Mn) from contaminated sediments exposed to aerobic and anaerobic conditions. The sediments were collected from Cheyenne River Sioux Tribal lands in South Dakota, which has dealt with mining legacy for several decades. The range of concentrations of total As measured from contaminated sediments was 96 to 259 mg kg-1, which co-occurs with Fe (21 000-22 005 mg kg-1) and Mn (682-703 mg kg-1). The transition from aerobic to anaerobic redox conditions yielded the highest microbial diversity, and the release of the highest concentrations of As, Fe, and Mn in batch experiments reacted with an exogenous electron donor (glucose). The reduction of As was confirmed by XANES analyses when transitioning from aerobic to anaerobic conditions. In contrast, the releases of As, Fe and Mn after a reaction with phosphate was at least 1 order of magnitude lower compared with experiments amended with glucose. Our results indicate that mine waste sediments amended with an exogenous electron donor trigger microbial reductive dissolution caused by anaerobic respiration. These dissolution processes can affect metal mobilization in systems transitioning from aerobic to anaerobic conditions in redox gradients. Our results are relevant for natural systems, for surface and groundwater exchange, or other systems in which metal cycling is influenced by chemical and biological processes.

17.
Chemosphere ; 184: 730-737, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28641224

RESUMO

Soluble ions released by elemental copper nanoparticles (Cu0 NP) are toxic to key microorganisms of wastewater treatment processes. However, their toxicity to anaerobic ammonium oxidation (anammox) has not yet been studied. Chelating agents occurring in wastewater may decrease copper ions (Cu2+) concentration and consequently, decrease copper toxicity. This study evaluated Cu0 NP and CuCl2 toxicity to anammox and the influence of ethylene diamine-tetra acetic acid (EDTA) on copper toxicity. Bioassays were supplemented with Cu0 NP or CuCl2 with and without EDTA. Anammox activities were used to calculate inhibition constants (Ki). Results showed that Cu0 NP are toxic to anammox. Ki constants with respect to added copper were 1.8- and 2.81-fold larger (less toxic) in EDTA-containing assays for Cu0 NP and CuCl2, respectively, compared to EDTA-free assays. Additionally, Ki constants calculated in EDTA-free assays with respect the measured dissolved copper concentration were 0.023 mM Cu0 NP and 0.014 mM CuCl2. The similarity of these Ki constants indicates that Cu0 NP toxicity to anammox is caused by the release of Cu2+. Finally, severe toxicity caused by 0.315 mM and Cu0 NP 0.118 mM CuCl2 was attenuated by 88-100% when 0.14 mM EDTA was supplied. Toxicity attenuation likely occurred because EDTA complexed Cu2+ ions, thus, decreasing their bioavailability. Overall, this study indicates that Cu0 NP and CuCl2 are toxic to anammox, and furthermore, that EDTA attenuates Cu0 NP and CuCl2 toxicity to anammox by complexing Cu2+ ions.


Assuntos
Cobre/toxicidade , Nanopartículas Metálicas/toxicidade , Ácido Acético , Compostos de Amônio/química , Quelantes , Ácido Edético/química , Etilenos , Águas Residuárias
18.
Sci Total Environ ; 548-549: 380-389, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26803736

RESUMO

Elemental copper (Cu(0)) and zinc oxide (ZnO) nanoparticle (NP) toxicity to methanogens has been attributed to the release of soluble metal ions. Iron sulfide (FeS) partially controls the soluble concentration of heavy metals and their toxicity in aquatic environments. Heavy metals displace the Fe from FeS forming poorly soluble metal sulfides in the FeS matrix. Therefore, FeS may be expected to attenuate the NP toxicity. This work assessed FeS as an attenuator of the methanogenic toxicity of Cu(0) and ZnO NPs and their soluble salt analogs. The toxicity attenuation capacity of fine (25-75µm) and coarse (500 to 1200µm) preparations of FeS (FeS-f and FeS-c respectively) was tested in the presence of highly inhibitory concentrations of CuCl2, ZnCl2 Cu(0) and ZnO NPs. FeS-f attenuated methanogenic toxicity better than FeS-c. The results revealed that 2.5× less FeS-f than FeS-c was required to recover the methanogenic activity to 50% (activity normalized to uninhibited controls). The results also indicated that a molar FeS-f/Cu(0) NP, FeS-f/ZnO NP, FeS-f/ZnCl2, and FeS-f/CuCl2 ratio of 2.14, 2.14, 4.28, and 8.56 respectively, was necessary to recover the methanogenic activity to >75%. Displacement experiments demonstrated that CuCl2 and ZnCl2 partially displaced Fe from FeS. As a whole, the results indicate that not all the sulfide in FeS was readily available to react with the soluble Cu and Zn ions which may explain the need for a large stoichiometric excess of FeS to highly attenuate Cu and Zn toxicity. Overall, this study provides evidence that FeS attenuates the toxicity caused by Cu(0) and ZnO NPs and their soluble ion analogs to methanogens.


Assuntos
Cobre/toxicidade , Ferro/química , Modelos Químicos , Sulfetos/química , Óxido de Zinco/toxicidade , Cloretos , Cobre/química , Nanopartículas Metálicas , Compostos de Zinco , Óxido de Zinco/química
19.
Bioresour Technol ; 216: 894-903, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27323241

RESUMO

Austere US military bases typically dispose of solid wastes, including large fractions of food waste (FW) and corrugated cardboard (CCB), by open dumping, landfilling, or burning. Anaerobic digestion (AD) offers an opportunity to reduce pollution and recover useful energy. This study aimed to evaluate the rates and yields of AD for FW-CCB mixtures. Batch AD was analyzed at substrate concentrations of 1-50g total chemical oxygen demand (COD)L(-1) using response surface methodology. At low concentrations, higher proportions of FW were correlated with faster specific methanogenic activities and greater final methane yields; however, concentrations of FW ⩾18.75gCODL(-1) caused inhibition. Digestion of mixtures with ⩾75% CCB occurred slowly but achieved methane yields >70%. Greater shifts in microbial communities were observed at higher substrate concentrations. Statistical models of methane yield and specific methanogenic activity indicated that FW and CCB exhibited no considerable interactions as substrates for AD.


Assuntos
Instalações Militares , Eliminação de Resíduos/métodos , Anaerobiose , Biocombustíveis , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos/microbiologia , Alimentos , Metano/metabolismo , Consórcios Microbianos/genética , Modelos Estatísticos , Eliminação de Resíduos/instrumentação , Resíduos Sólidos
20.
J Hazard Mater ; 283: 755-63, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25464319

RESUMO

Soluble ions released by zinc oxide (ZnO) and copper (Cu(0)) nanoparticles (NPs) have been associated with toxicity to methanogens. This study evaluated the role of biogenic sulfide in attenuating ZnO and Cu(0) NP toxicity to methanogens. Short- and long-term batch experiments were conducted to explore ZnO and Cu(0) NPs toxicity to acetoclastic methanogens in sulfate-containing (0.4mM) and sulfate-free conditions. ZnO and Cu(0) were respectively 14 and 7-fold less toxic in sulfate-containing than in sulfate-free assays as indicated by inhibitory constants (Ki). The Ki with respect to residual soluble metal indicated that soluble metal was well correlated with toxicity irrespective of the metal ion source or presence of biogenic sulfide. Long-term assays indicated that ZnO and Cu(0) NPs caused different effects on methanogens. ZnO NPs without protection of sulfide caused a chronic effect, whereas Cu(0) NPs caused an acute effect and recovered. This study confirms that biogenic sulfide effectively attenuates ZnO and Cu(0) NPs toxicity to methanogens by the formation of metal sulfides.


Assuntos
Cobre/toxicidade , Nanopartículas Metálicas/toxicidade , Sulfetos/química , Eliminação de Resíduos Líquidos/métodos , Óxido de Zinco/toxicidade , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Metano/biossíntese , Esgotos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA