Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 607(7918): 256-259, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35831603

RESUMO

Fast radio bursts (FRBs) are millisecond-duration flashes of radio waves that are visible at distances of billions of light years1. The nature of their progenitors and their emission mechanism remain open astrophysical questions2. Here we report the detection of the multicomponent FRB 20191221A and the identification of a periodic separation of 216.8(1) ms between its components, with a significance of 6.5σ. The long (roughly 3 s) duration and nine or more components forming the pulse profile make this source an outlier in the FRB population. Such short periodicity provides strong evidence for a neutron-star origin of the event. Moreover, our detection favours emission arising from the neutron-star magnetosphere3,4, as opposed to emission regions located further away from the star, as predicted by some models5.

2.
Phys Rev Lett ; 127(25): 251302, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-35029450

RESUMO

We search for a first-order phase transition gravitational wave signal in 45 pulsars from the NANOGrav 12.5-year dataset. We find that the data can be modeled in terms of a strong first order phase transition taking place at temperatures below the electroweak scale. However, we do not observe any strong preference for a phase-transition interpretation of the signal over the standard astrophysical interpretation in terms of supermassive black hole mergers; but we expect to gain additional discriminating power with future datasets, improving the signal to noise ratio and extending the sensitivity window to lower frequencies. An interesting open question is how well gravitational wave observatories could separate such signals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA