Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 28(40): 405201, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28836505

RESUMO

We report the results of finite element simulations of the ON state characteristic of VO2-based threshold switching devices and compare the results with experimental data. The model is based on thermally induced threshold switching (thermal runaway) and successfully reproduces the I-V characteristics showing the formation and growth of the conductive filament in the ON state. Furthermore, we compare the I-V characteristics for two VO2 films with different electrical conductivities in the insulating and metallic phases as well as those based on TaO x and NbO x functional layers.

2.
ACS Appl Electron Mater ; 5(4): 2414-2421, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37124236

RESUMO

Understanding the physical changes during electroformation and switching processes in transition-metal-oxide-based non-volatile memory devices is important for advancing this technology. Relatively few characteristics of these devices have been assessed in operando. In this work, we present scanning thermal microscopy measurements in vacuum on TaO x -based memory devices electroformed in both positive and negative polarities and high- and low-resistance states. The observed surface temperature footprints of the filament showed higher peak temperatures and narrower temperature distributions when the top electrode served as the anode in the electroformation process. This is consistent with a model in which a hot spot is created by a gap in the conducting filament that forms closest to the anode. A similar behavior was seen on comparing the high-resistance state to the low-resistance state, with the low-resistance footprint showing a lower peak and a larger width, consistent with the gap disappearing when the device is switched from high resistance to low resistance.

3.
ACS Appl Mater Interfaces ; 12(24): 27378-27385, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32441092

RESUMO

The valence change model describes the resistive switching in metal oxide-based devices as due to electroreduction of the oxide and subsequent electromigration of oxygen vacancies. Here, we present cross-sectional X-ray energy-dispersive spectroscopy elemental maps of Ta, O, N, and Ti in electroformed TiN/TaO2.0/TiN structures. O, N, and Ti were exchanged between the anode and the functional oxide in devices formed at high power (∼1 mW), but the exchange was below the detection limit at low power (<0.5 mW). All structures exhibit a similar Ta-enriched and O-depleted filament formed by the elemental segregation in the functional oxide by the temperature gradient. The elemental interchange is interpreted as due to Fick's diffusion caused by high temperatures in the gap of the filament and is not an essential part of electroformation.

4.
Nat Commun ; 10(1): 1628, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967535

RESUMO

Threshold switching devices are of increasing importance for a number of applications including solid-state memories and neuromorphic circuits. Their non-linear characteristics are thought to be associated with a spontaneous (occurring without an apparent external stimulus) current flow constriction but the extent and the underlying mechanism are a subject of debate. Here we use Scanning Joule Expansion Microscopy to demonstrate that, in functional layers with thermally activated electrical conductivity, the current spontaneously and gradually constricts when a device is biased into the negative differential resistance region. We also show that the S-type negative differential resistance I-V characteristics are only a subset of possible solutions and it is possible to have multiple current density distributions corresponding to the same value of the device voltage. In materials with steep dependence of current on temperature the current constriction can occur in nanoscale devices, making this effect relevant for computing applications.

5.
Nanoscale ; 9(37): 14139-14148, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28905051

RESUMO

Materials exhibiting insulator to metal transition (IMT) and transition metal oxides showing threshold switching behavior are considered as promising candidates for selector devices for crossbar non-volatile memory application. In this study, we use an electrothermal model to simulate the behavior of nanoscale selectors based on several different functional oxides (TaOx, VO2 and NbO2). We extract the device characteristics, such as threshold voltage (VTH), leakage current, device temperature in the ON state, and the size of the conductive filament as a function of selector diameter and functional layer thickness. In addition, we benchmark these devices in a 1 selector/1 resistor (1S1R) cell with a generic phase change-like memory element. These findings provide an insight into how device performance changes with scaling and help with material selection and design of selectors.

6.
ACS Appl Mater Interfaces ; 9(13): 11704-11710, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28293945

RESUMO

Pulsed and quasi-static current-voltage (I-V) characteristics of threshold switching in TiN/TaOx/TiN crossbar devices were measured as a function of stage temperature (200-495 K) and oxygen flow during the deposition of TaOx. A comparison of the pulsed and quasi-static characteristics in the high resistance part of the I-V revealed that Joule self-heating significantly affected the current and was a likely source of negative differential resistance (NDR) and thermal runaway. The experimental quasi-static I-V's were simulated using a finite element electro-thermal model that coupled current and heat flow and incorporated an external circuit with an appropriate load resistor. The simulation reproduced the experimental I-V including the OFF-state at low currents and the volatile NDR region. In the NDR region, the simulation predicted spontaneous current constriction forming a small-diameter hot conducting filament with a radius of 250 nm in a 6 µm diameter device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA