Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Infect Dis ; 221(4): 660-667, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31574153

RESUMO

BACKGROUND: Lethal and edema toxins are critical virulence factors of Bacillus anthracis. Few data are available on their presence in the early stage of intranasal infection. METHODS: To investigate the diffusion of edema factor (EF) and lethal factor (LF), we use sensitive quantitative methods to measure their enzymatic activities in mice intranasally challenged with a wild-type B anthracis strain or with an isogenic mutant deficient for the protective antigen. RESULTS: One hour after mouse challenge, although only 7% of mice presented bacteremia, LF and EF were detected in the blood of 100% and 42% of mice, respectively. Protective antigen facilitated the diffusion of LF and EF into the blood compartment. Toxins played a significant role in the systemic dissemination of B anthracis in the blood, spleen, and liver. A mouse model of intoxination further confirmed that LT and ET could diffuse rapidly in the circulation, independently of bacteria. CONCLUSIONS: In this inhalational model, toxins have disseminated rapidly in the blood, playing a significant and novel role in the early systemic diffusion of bacteria, demonstrating that they may represent a very early target for the diagnosis and the treatment of anthrax.


Assuntos
Antraz/metabolismo , Antígenos de Bactérias/sangue , Bacillus anthracis/patogenicidade , Toxinas Bacterianas/sangue , Absorção Nasal , Fatores de Virulência/sangue , Animais , Animais não Endogâmicos , Antraz/microbiologia , Bacillus anthracis/enzimologia , Bacteriemia , Biomarcadores/sangue , Modelos Animais de Doenças , Ativação Enzimática , Ensaios Enzimáticos , Feminino , Camundongos , Virulência
2.
J Immunol ; 197(8): 3225-3232, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27605012

RESUMO

Exogenous activation of invariant NKT (iNKT) cells by the superagonist α-galactosylceramide (α-GalCer) can protect against cancer, autoimmune diseases, and infections. In the current study, we investigated the effect of α-GalCer against Bacillus anthracis infection, the agent of anthrax. Using an experimental model of s.c. B. anthracis infection (an encapsulated nontoxigenic strain), we show that concomitant administration of α-GalCer delayed B. anthracis systemic dissemination and prolonged mouse survival. Depletion of subcapsular sinus CD169-positive macrophages by clodronate-containing liposome was associated with a lack of iNKT cell activation in the draining lymph nodes (dLNs) and prevented the protective effect of α-GalCer on bacterial dissemination out of the dLNs. Production of IFN-γ triggered chemokine (C-C motif) ligand 3 synthesis and recruitment of neutrophils in the dLNs, leading to the restraint of B. anthracis dissemination. Our data highlight a novel immunological pathway leading to the control of B. anthracis infection, a finding that might lead to improved therapeutics based on iNKT cells.


Assuntos
Antraz/imunologia , Antraz/microbiologia , Bacillus anthracis/imunologia , Células T Matadoras Naturais/imunologia , Animais , Antraz/terapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Bioorg Med Chem ; 25(16): 4245-4252, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28687228

RESUMO

Membrane-active foldamers have recently emerged as potential mimics of antimicrobial peptides (AMPs). Amphiphilic cationic helical N,N'-linked oligoureas are one such class of AMP mimics with activities in vitro against a broad range of bacteria including Bacillus anthracis, a Gram-positive sporulating bacillus and causing agent of anthrax. Here we have used site-selective chemical modifications of the oligourea backbone to gain additional insight into the relationship between structure and function and modulate anthracidal activity. A series of analogues in which urea linkages at selected positions are replaced by thiourea and guanidium surrogates have been prepared on solid support and tested against different bacterial forms of B. anthracis (germinated spores and encapsulated bacilli). Urea→thiourea and urea→guanidinium replacements close to the negative end of the helix dipole led to analogues with increased potency and selectivity for B. anthracis versus mammalian cells.


Assuntos
Antibacterianos/farmacologia , Bacillus anthracis/efeitos dos fármacos , Guanidina/farmacologia , Tioureia/farmacologia , Ureia/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Guanidina/química , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Células RAW 264.7 , Relação Estrutura-Atividade , Tioureia/química , Ureia/análogos & derivados , Ureia/química
4.
J Infect Dis ; 214(2): 281-7, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26977051

RESUMO

The lung is the terminal target of Bacillus anthracis before death, whatever the route of infection (cutaneous, inhalational, or digestive). During a cutaneous infection in absence of toxins, we observed encapsulated bacteria colonizing the alveolar capillary network, bacteria and hemorrhages in alveolar and bronchiolar spaces, and hypoxic foci in the lung (endothelial cells) and brain (neurons and neuropil). Circulating encapsulated bacteria were as chains of approximately 13 µm in length. Bacteria of such size were immediately trapped within the lung capillary network, but bacteria of shorter length were not. Controlling lung-targeted pathology would be beneficial for anthrax treatment.


Assuntos
Antraz/microbiologia , Antraz/patologia , Bacillus anthracis/isolamento & purificação , Capilares/microbiologia , Pulmão/microbiologia , Animais , Capilares/patologia , Modelos Animais de Doenças , Histocitoquímica , Imuno-Histoquímica , Pulmão/patologia , Camundongos , Microscopia Eletrônica de Transmissão
5.
Mol Cell Proteomics ; 13(3): 716-32, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24379445

RESUMO

Bacillus anthracis is the causative bacteria of anthrax, an acute and often fatal disease in humans. The infectious agent, the spore, represents a real bioterrorism threat and its specific identification is crucial. However, because of the high genomic relatedness within the Bacillus cereus group, it is still a real challenge to identify B. anthracis spores confidently. Mass spectrometry-based tools represent a powerful approach to the efficient discovery and identification of such protein markers. Here we undertook comparative proteomics analyses of Bacillus anthracis, cereus and thuringiensis spores to identify proteoforms unique to B. anthracis. The marker discovery pipeline developed combined peptide- and protein-centric approaches using liquid chromatography coupled to tandem mass spectrometry experiments using a high resolution/high mass accuracy LTQ-Orbitrap instrument. By combining these data with those from complementary bioinformatics approaches, we were able to highlight a dozen novel proteins consistently observed across all the investigated B. anthracis spores while being absent in B. cereus/thuringiensis spores. To further demonstrate the relevance of these markers and their strict specificity to B. anthracis, the number of strains studied was extended to 55, by including closely related strains such as B. thuringiensis 9727, and above all the B. cereus biovar anthracis CI, CA strains that possess pXO1- and pXO2-like plasmids. Under these conditions, the combination of proteomics and genomics approaches confirms the pertinence of 11 markers. Genes encoding these 11 markers are located on the chromosome, which provides additional targets complementary to the commonly used plasmid-encoded markers. Last but not least, we also report the development of a targeted liquid chromatography coupled to tandem mass spectrometry method involving the selection reaction monitoring mode for the monitoring of the 4 most suitable protein markers. Within a proof-of-concept study, we demonstrate the value of this approach for the further high throughput and specific detection of B. anthracis spores within complex samples.


Assuntos
Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Proteínas de Bactérias/metabolismo , Proteômica/métodos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Biomarcadores , Cromatografia Líquida , Misturas Complexas/metabolismo , Biologia Computacional , Espectrometria de Massas , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Especificidade da Espécie , Esporos Bacterianos/genética
6.
Infect Immun ; 83(8): 3114-25, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26015478

RESUMO

Bacillus anthracis secretes the edema toxin (ET) that disrupts the cellular physiology of endothelial and immune cells, ultimately affecting the adherens junction integrity of blood vessels that in turn leads to edema. The effects of ET on the cytoskeleton, which is critical in cell physiology, have not been described thus far on macrophages. In this study, we have developed different adhesive micropatterned surfaces (L and crossbow) to control the shape of bone marrow-derived macrophages (BMDMs) and primary peritoneal macrophages. We found that macrophage F-actin cytoskeleton adopts a specific polar organization slightly different from classical human HeLa cells on the micropatterns. Moreover, ET induced a major quantitative reorganization of F-actin within 16 h with a collapse at the nonadhesive side of BMDMs along the nucleus. There was an increase in size and deformation into a kidney-like shape, followed by a decrease in size that correlates with a global cellular collapse. The collapse of F-actin was correlated with a release of focal adhesion on the patterns and decreased cell size. Finally, the cell nucleus was affected by actin reorganization. By using this technology, we could describe many previously unknown macrophage cellular dysfunctions induced by ET. This novel tool could be used to analyze more broadly the effects of toxins and other virulence factors that target the cytoskeleton.


Assuntos
Antraz/metabolismo , Antígenos de Bactérias/metabolismo , Bacillus anthracis/metabolismo , Toxinas Bacterianas/metabolismo , Citoesqueleto/metabolismo , Actinas/metabolismo , Animais , Antraz/microbiologia , Antígenos de Bactérias/genética , Bacillus anthracis/genética , Toxinas Bacterianas/genética , Citoesqueleto/microbiologia , Feminino , Humanos , Camundongos Endogâmicos C57BL
7.
PLoS Pathog ; 8(1): e1002481, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22253596

RESUMO

NK cells are important immune effectors for preventing microbial invasion and dissemination, through natural cytotoxicity and cytokine secretion. Bacillus anthracis spores can efficiently drive IFN-γ production by NK cells. The present study provides insights into the mechanisms of cytokine and cellular signaling that underlie the process of NK-cell activation by B. anthracis and the bacterial strategies to subvert and evade this response. Infection with non-toxigenic encapsulated B. anthracis induced recruitment of NK cells and macrophages into the mouse draining lymph node. Production of edema (ET) or lethal (LT) toxin during infection impaired this cellular recruitment. NK cell depletion led to accelerated systemic bacterial dissemination. IFN-γ production by NK cells in response to B. anthracis spores was: i) contact-dependent through RAE-1-NKG2D interaction with macrophages; ii) IL-12, IL-18, and IL-15-dependent, where IL-12 played a key role and regulated both NK cell and macrophage activation; and iii) required IL-18 for only an initial short time window. B. anthracis toxins subverted both NK cell essential functions. ET and LT disrupted IFN-γ production through different mechanisms. LT acted both on macrophages and NK cells, whereas ET mainly affected macrophages and did not alter NK cell capacity of IFN-γ secretion. In contrast, ET and LT inhibited the natural cytotoxicity function of NK cells, both in vitro and in vivo. The subverting action of ET thus led to dissociation in NK cell function and blocked natural cytotoxicity without affecting IFN-γ secretion. The high efficiency of this process stresses the impact that this toxin may exert in anthrax pathogenesis, and highlights a potential usefulness for controlling excessive cytotoxic responses in immunopathological diseases. Our findings therefore exemplify the delicate balance between bacterial stimulation and evasion strategies. This highlights the potential implication of the crosstalk between host innate defences and B. anthracis in initial anthrax control mechanisms.


Assuntos
Bacillus anthracis/imunologia , Toxinas Bacterianas/farmacologia , Células Matadoras Naturais/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Esporos Bacterianos/imunologia , Animais , Células Cultivadas , Feminino , Homeostase/efeitos dos fármacos , Homeostase/imunologia , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor Cross-Talk/efeitos dos fármacos , Receptor Cross-Talk/imunologia , Esporos Bacterianos/fisiologia
8.
J Infect Dis ; 207(3): 450-7, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23148288

RESUMO

BACKGROUND: Germination is a key step for successful Bacillus anthracis colonization and systemic dissemination. Few data are available on spore germination in vivo, and the necessity of spore and host cell interactions to initiate germination is unclear. METHODS: To investigate the early interactions between B. anthracis spores and cutaneous tissue, spores were inoculated in an intraperitoneal cell-free device in guinea pigs or into the pinna of mice. Germination and bacterial growth were analyzed through colony-forming unit enumeration and electron microscopy. RESULTS: In the guinea pig model, germination occurred in vivo in the absence of cell contact. Similarly, in the mouse ear, germination started within 15 minutes after inoculation, and germinating spores were found in the absence of surrounding cells. Germination was not observed in macrophage-rich draining lymph nodes, liver, and spleen. Edema and lethal toxin production were not required for germination, as a toxin-deficient strain was as effective as a Sterne-like strain. B. anthracis growth was locally controlled for 6 hours. CONCLUSIONS: Spore germination involving no cell interactions can occur in vivo, suggesting that diffusible germinants or other signals appear sufficient. Different host tissues display drastic differences in germination-triggering capacity. Initial control of bacterial growth suggests a therapeutic means to exploit host innate defenses to hinder B. anthracis colonization.


Assuntos
Antraz/microbiologia , Bacillus anthracis/crescimento & desenvolvimento , Dermatopatias Bacterianas/microbiologia , Esporos Bacterianos/crescimento & desenvolvimento , Animais , Bacillus anthracis/ultraestrutura , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Feminino , Cobaias , Interações Hospedeiro-Patógeno , Fígado/microbiologia , Tecido Linfoide/microbiologia , Camundongos , Baço/microbiologia , Esporos Bacterianos/ultraestrutura
9.
Toxins (Basel) ; 16(2)2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38393144

RESUMO

Institut Pasteur and Bacillus anthracis have enjoyed a relationship lasting almost 120 years, starting from its foundation and the pioneering work of Louis Pasteur in the nascent fields of microbiology and vaccination, and blooming after 1986 following the molecular biology/genetic revolution. This contribution will give a historical overview of these two research eras, taking advantage of the archives conserved at Institut Pasteur. The first era mainly focused on the production, characterisation, surveillance and improvement of veterinary anthrax vaccines; the concepts and technologies with which to reach a deep understanding of this research field were not yet available. The second period saw a new era of B. anthracis research at Institut Pasteur, with the anthrax laboratory developing a multi-disciplinary approach, ranging from structural analysis, biochemistry, genetic expression, and regulation to bacterial-host cell interactions, in vivo pathogenicity, and therapy development; this led to the comprehensive unravelling of many facets of this toxi-infection. B. anthracis may exemplify some general points on how science is performed in a given society at a given time and how a scientific research domain evolves. A striking illustration can be seen in the additive layers of regulations that were implemented from the beginning of the 21st century and their impact on B. anthracis research. B. anthracis and anthrax are complex systems that raise many valuable questions regarding basic research. One may hope that B. anthracis research will be re-initiated under favourable circumstances later at Institut Pasteur.


Assuntos
Antraz , Bacillus anthracis , Toxinas Bacterianas , Humanos , Bacillus anthracis/metabolismo , Antraz/microbiologia , Carvão Vegetal , Toxinas Bacterianas/metabolismo , Virulência , Antígenos de Bactérias/genética
10.
Med Trop Sante Int ; 3(3)2023 09 30.
Artigo em Francês | MEDLINE | ID: mdl-38094485

RESUMO

Charles Louis Alphonse Laveran - 18 June 1845 - 18 May 1922: first French Nobel Prize in Medicine, "in recognition of his work on the role played by protozoa in causing diseases". One hundred years after his death, only written records remain of his work and life. The witnesses to this period are no more. Alphonse Laveran has become an "object" of history.He was deeply involved in a turbulent historical period, marked by crises of regime change (Monarchy/Empire/Republic), military events (French colonial expansion in North Africa from 1830, the wars of 1870 and 1914-1918) and their consequences (the medical impact of infections in the colonial empire and during armed conflicts, the Dreyfus affair, among others), the advent of Pasteurian "microbiology" and the deciphering of the causes and modes of transmission of infectious diseases. A player on the edge of the military and civilian worlds, with their own, sometimes incompatible, visions of the aims and objectives to be pursued, Alphonse Laveran lived through these upheavals in a society in the throes of change, in his family and scientific environment.Paradoxically, the primary sources available to us for learning about this scientist and man are both abundant and "scarce" for us in the 21st century. His scientific publications and many of his speeches at various academies, committees and meetings are for the most part public and accessible, giving us a vision of a professional in scientific and medical research in action, presenting and convincing people of his ideas and theoretical and practical insights. The writings of his contemporaries, both public and private, shed light on - distort? - the man's many facets. On the other hand, there are few surviving sources on the man and his vision of life, his life and that of his family and friends.We will rely on the archives that have been preserved, in particular by the organisations that welcomed him during his military and civilian career, as well as by his wife Marie Laveran and his colleague Marie Phisalix, one of the first doctors of medicine in France and a renowned herpetologist. These two female figures have preserved and contributed to his memory. Let's take a closer look at the man behind the scientist, as we can imagine him through the traces that remain.


Assuntos
Infecções por Protozoários , Humanos , África do Norte , França , Infecções por Protozoários/história , História do Século XIX , História do Século XX
11.
Res Microbiol ; 174(6): 104054, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37003307

RESUMO

Bacillus anthracis is a spore-forming bacterium that produces two major virulence factors, a tripartite toxin with two enzymatic toxic activities and a pseudo-proteic capsule. One of the main described functions of the poly-gamma-d-glutamate capsule is to enable B. anthracis bacilli to escape phagocytosis. Thus, kinetics of expression of the capsule filaments at the surface of the emerging bacillus during germination is an important step for the protection of the nascent bacilli. In this study, through immunofluorescence and electron microscopic approaches, we show the emergence of the capsule through a significant surface of the exosporium in the vast majority of the germinating spores, with co-detection of BclA and capsular material. This suggests that, due to an early capsule expression, the extracellular life of B. anthracis might occur earlier than previously thought, once germination is triggered. This raises the prospect that an anti-capsular vaccine may play a protective role at the initial stage of infection by opsonisation of the nascent encapsulated bacilli before their emergence from the exosporium.


Assuntos
Bacillus anthracis , Bacillus anthracis/metabolismo , Esporos Bacterianos/metabolismo
12.
Anal Chem ; 83(22): 8675-82, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21961787

RESUMO

Bacillus anthracis is one of the most dangerous agents of the bioterrorism threat. We present here a sensitive immuno-liquid chromatography-tandem mass spectrometry (immuno-LC-MS/MS) approach to spore detection in complex environmental samples. It is based on the combined specificity and sensitivity of two techniques: immunocapture and targeted mass spectrometry. The immunocapture step, realized directly on the intact spores, is essential for their selective isolation and concentration from complex environmental samples. After parallel trypsin and Glu-C digestions, proteotypic peptides corresponding to small acid-soluble spore protein-B (SASP-B) are specifically monitored in the multiple reaction monitoring (MRM) mass spectrometry mode. Peptide ratio is carefully monitored and provides an additional level of specificity, which is shown to be highly useful for distinguishing closely related samples and avoiding false-positive/negative results. Sensitivity at the level of the infectious dose is demonstrated, with limits of detection of 7 × 10(3) spores/mL of milk or 10 mg of soil. This mass spectrometry approach is thus complementary to polymerase chain reaction (PCR) techniques.


Assuntos
Bacillus anthracis/química , Bacillus anthracis/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Ensaio de Imunoadsorção Enzimática , Espectrometria de Massas em Tandem
13.
PLoS Pathog ; 5(4): e1000359, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19343203

RESUMO

Lethal toxin (LT) is a critical virulence factor of Bacillus anthracis, the etiological agent of anthrax, whose pulmonary form is fatal in the absence of treatment. Inflammatory response is a key process of host defense against invading pathogens. We report here that intranasal instillation of a B. anthracis strain bearing inactive LT stimulates cytokine production and polymorphonuclear (PMN) neutrophils recruitment in lungs. These responses are repressed by a prior instillation of an LT preparation. In contrast, instillation of a B. anthracis strain expressing active LT represses lung inflammation. The inhibitory effects of LT on cytokine production are also observed in vitro using mouse and human pulmonary epithelial cells. These effects are associated with an alteration of ERK and p38-MAPK phosphorylation, but not JNK phosphorylation. We demonstrate that although NF-kappaB is essential for IL-8 expression, LT downregulates this expression without interfering with NF-kappaB activation in epithelial cells. Histone modifications are known to induce chromatin remodelling, thereby enhancing NF-kappaB binding on promoters of a subset of genes involved in immune response. We show that LT selectively prevents histone H3 phosphorylation at Ser 10 and recruitment of the p65 subunit of NF-kappaB at the IL-8 and KC promoters. Our results suggest that B. anthracis represses the immune response, in part by altering chromatin accessibility of IL-8 promoter to NF-kappaB in epithelial cells. This epigenetic reprogramming, in addition to previously reported effects of LT, may represent an efficient strategy used by B. anthracis for invading the host.


Assuntos
Antígenos de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Interleucina-8/metabolismo , Pulmão/metabolismo , Mucosa Respiratória/metabolismo , Animais , Antígenos de Bactérias/fisiologia , Cromatina/metabolismo , Citocinas/genética , Citocinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Interleucina-8/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosforilação , Pneumonia , Regiões Promotoras Genéticas , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Eur J Gen Pract ; 27(1): 320-325, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34755587

RESUMO

BACKGROUND: Clostridioides difficile infection (CDI) is rising and increases patient healthcare costs due to extended hospitalisation, tests and medications. Management of CDI in French primary care is poorly reported. OBJECTIVES: To characterise patients suffering from CDI, managed in primary care and describe their clinical outcomes. METHODS: Retrospective observational study based on survey data among 500 randomly selected General Practitioners (GPs) surveyed in France from September 2018 to April 2019. GPs were asked to complete a multiple-choice questionnaire for each reported patient presenting a CDI. Responses were analysed according to clinical characteristics. Treatment strategies were compared according to the outcome: recovery or recurrent infection. RESULTS: Participation rate was 8.6% (n = 43/500) with two incomplete questionnaires. Data from 41 patients with an actual diagnosis of CDI were analysed. Recovery was observed in 61% of patients with a confirmed diagnosis of CDI. In the recovery group, this was exclusively a primary episode, most patients (72%) had no comorbidities, were significantly younger (p = 0.02) than the ones who relapsed and 92% were successfully treated with oral metronidazole. Duration of diarrhoea after antimicrobial treatment initiation was significantly shorter in the recovery group (≤ 48 h) (p = 0.03). Cooperation with hospital specialists was reported in 28% of the recovery group versus 87.5% of the recurrent group (p = 0.0003). Overall, GPs managed successfully 82.9% of cases without need of hospital admission. CONCLUSION: GPs provide relevant ambulatory care for mild primary episodes of CDI using oral metronidazole. Persistent diarrhoea despite an appropriate anti-Clostridiodes regimen should be interpreted as an early predictor of relapse.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Antibacterianos/uso terapêutico , Infecções por Clostridium/diagnóstico , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/epidemiologia , Humanos , Metronidazol/uso terapêutico , Atenção Primária à Saúde , Estudos Retrospectivos
15.
J Infect Dis ; 200(9): 1381-9, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19785525

RESUMO

BACKGROUND: The Bacillus anthracis poly-gamma-D-glutamate capsule is essential for virulence. It impedes phagocytosis and protects bacilli from the immune system, thus promoting systemic dissemination. METHODS: To further define the virulence mechanisms brought into play by the capsule, we characterized the interactions between encapsulated nontoxinogenic B. anthracis and its host in vivo through histological analysis, perfusion, and competition experiments with purified capsule. RESULTS: Clearance of encapsulated bacilli from the blood was rapid (>90% clearance within 5 min), with 75% of the bacteria being trapped in the liver. Competition experiments with purified capsule polyglutamate inhibited this interaction. At the septicemic phase of cutaneous infection with spores, the encapsulated bacilli were trapped in the vascular spaces of the liver and interacted closely with the liver endothelium in the sinusoids and terminal and portal veins. They often grow as microcolonies containing capsular material shed by the bacteria. CONCLUSION: We show that, in addition to its inhibitory effect on the interaction with the immune system, the capsule surrounding B. anthracis plays an active role in mediating the trapping of the bacteria within the liver and may thus contribute to anthrax pathogenesis. Because other microorganisms produce polyglutamate, it may also represent a general mechanism of virulence or in vivo survival.


Assuntos
Antraz/microbiologia , Bacillus anthracis/patogenicidade , Cápsulas Bacterianas/fisiologia , Endotélio/microbiologia , Fígado/microbiologia , Animais , Feminino , Interações Hospedeiro-Patógeno , Camundongos , Ácido Poliglutâmico/fisiologia , Virulência
16.
Front Mol Biosci ; 7: 586544, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33344505

RESUMO

Molecular dynamics (MD) simulations have been recorded on the complex between the edema factor (EF) of Bacilllus anthracis and calmodulin (CaM), starting from a structure with the orthosteric inhibitor adefovir bound in the EF catalytic site. The starting structure has been destabilized by alternately suppressing different co-factors, such as adefovir ligand or ions, revealing several long-distance correlations between the conformation of CaM, the geometry of the CaM/EF interface, the enzymatic site and the overall organization of the complex. An allosteric communication between CaM/EF interface and the EF catalytic site, highlighted by these correlations, was confirmed by several bioinformatics approaches from the literature. A network of hydrogen bonds and stacking interactions extending from the helix V of of CaM, and the residues of the switches A, B and C, and connecting to catalytic site residues, is a plausible candidate for the mediation of allosteric communication. The greatest variability in volume between the different MD conditions was also found for cavities present at the EF/CaM interface and in the EF catalytic site. The similarity between the predictions from literature and the volume variability might introduce the volume variability as new descriptor of allostery.

17.
Sci Rep ; 10(1): 2768, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066806

RESUMO

Postoperative cognitive dysfunction (POCD) is a major complication affecting patients of any age undergoing surgery. This syndrome impacts everyday life up to months after hospital discharge, and its pathophysiology still remains unclear. Translational research focusing on POCD is based on a wide variety of rodent models, such as the murine tibial fracture, whose severity can limit mouse locomotion and proper behavioral assessment. Besides, influence of skeletal muscle injury, a lesion encountered in a wide range of surgeries, has not been explored in POCD occurrence. We propose a physical model of muscle injury in CX3CR1GFP/+ mice (displaying green fluorescent microglial cells) to study POCD, with morphological, behavioral and molecular approaches. We highlighted: alteration of short- and long-term memory after muscle regeneration, wide microglial reactivity in the brain, including hippocampus area, 24 hours after muscle injury, and an alteration of central brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) balance, 28 days after muscle injury. Our results suggest for the first time that muscle injury can have early as well as late impacts on the brain. Our CX3CR1GFP/+ model can also facilitate microglial investigation, more specifically their pivotal role in neuroinflammation and synaptic plasticity, in the pathophysiology of POCD.


Assuntos
Encéfalo/cirurgia , Músculo Esquelético/cirurgia , Complicações Cognitivas Pós-Operatórias/patologia , Complicações Pós-Operatórias/metabolismo , Envelhecimento/patologia , Animais , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Hipocampo/lesões , Hipocampo/patologia , Hipocampo/cirurgia , Humanos , Masculino , Camundongos , Microglia/patologia , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fator de Crescimento Neural/metabolismo , Complicações Cognitivas Pós-Operatórias/etiologia , Complicações Cognitivas Pós-Operatórias/metabolismo , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/patologia
18.
Infect Immun ; 77(3): 1197-207, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19114543

RESUMO

Protective antigen (PA)-based anthrax vaccines acting on toxins are less effective than live attenuated vaccines, suggesting that additional antigens may contribute to protective immunity. Several reports indicate that capsule or spore-associated antigens may enhance the protection afforded by PA. Addition of formaldehyde-inactivated spores (FIS) to PA (PA-FIS) elicits total protection against cutaneous anthrax. Nevertheless, vaccines that are effective against cutaneous anthrax may not be so against inhalational anthrax. The aim of this work was to optimize immunization with PA-FIS and to assess vaccine efficacy against inhalational anthrax. We assessed the immune response to recombinant anthrax PA from Bacillus anthracis (rPA)-FIS administered by various immunization protocols and the protection provided to mice and guinea pigs infected through the respiratory route with spores of a virulent strain of B. anthracis. Combined subcutaneous plus intranasal immunization of mice yielded a mucosal immunoglobulin G response to rPA that was more than 20 times higher than that in lung mucosal secretions after subcutaneous vaccination. The titers of toxin-neutralizing antibody and antispore antibody were also significantly higher: nine and eight times higher, respectively. The optimized immunization elicited total protection of mice intranasally infected with the virulent B. anthracis strain 17JB. Guinea pigs were fully protected, both against an intranasal challenge with 100 50% lethal doses (LD(50)) and against an aerosol with 75 LD(50) of spores of the highly virulent strain 9602. Conversely, immunization with PA alone did not elicit protection. These results demonstrate that the association of PA and spores is very much more effective than PA alone against experimental inhalational anthrax.


Assuntos
Vacinas contra Antraz/imunologia , Antraz/prevenção & controle , Antígenos de Bactérias/imunologia , Esporos Bacterianos/imunologia , Administração por Inalação , Administração Intranasal , Animais , Antraz/imunologia , Vacinas contra Antraz/administração & dosagem , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/administração & dosagem , Bacillus anthracis/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Cobaias , Injeções Subcutâneas , Pneumopatias/imunologia , Pneumopatias/microbiologia , Pneumopatias/prevenção & controle , Camundongos
19.
Anal Chem ; 81(14): 5935-41, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19522516

RESUMO

Edema factor (EF), a calmodulin-activated adenylyl cyclase, is a toxin which contributes to cutaneous and systemic anthrax. As a novel strategy to detect anthrax toxins in humans or animals infected by Bacillus anthracis, we have developed a sensitive enzymatic assay to be able to monitor functional EF in human and animal plasma. Samples containing EF are incubated in the presence of calmodulin and ATP, which is converted to cAMP. After oxidation and derivatization, cAMP is monitored by competitive enzyme immunoassay. Because of the high turnover of EF and the sensitivity of cAMP detection, EF can be detected at concentrations of 1 pg/mL (10 fM) in 4 h in plasma from humans or at 10 pg/mL in the plasma of various animal species using only a blood volume of 5 microL. The assay has good reproducibility with intra- and interday coefficients of variation in the range of 20% and is not subject to significant interindividual matrix effects. In an experimental study performed in mice infected with the Berne strain, we were able to detect EF in serum and ear tissues. This simple and robust combination of enzymatic reaction and enzyme immunoassay for the diagnosis of anthrax toxemia could prove useful in biological threat detection as well in research and clinical practice.


Assuntos
Antraz/sangue , Antraz/diagnóstico , Antígenos de Bactérias/sangue , Toxinas Bacterianas/sangue , Trifosfato de Adenosina/metabolismo , Animais , Antígenos de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Calmodulina/metabolismo , Bovinos , AMP Cíclico/metabolismo , Feminino , Humanos , Técnicas Imunoenzimáticas , Camundongos
20.
PLoS Pathog ; 3(6): e76, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17542645

RESUMO

Bacillus anthracis causes three forms of anthrax: inhalational, gastrointestinal, and cutaneous. Anthrax is characterized by both toxemia, which is caused by secretion of immunomodulating toxins (lethal toxin and edema toxin), and septicemia, which is associated with bacterial encapsulation. Here we report that, contrary to the current view of B. anthracis pathogenesis, B. anthracis spores germinate and establish infections at the initial site of inoculation in both inhalational and cutaneous infections without needing to be transported to draining lymph nodes, and that inhaled spores establish initial infection in nasal-associated lymphoid tissues. Furthermore, we found that Peyer's patches in the mouse intestine are the primary site of bacterial growth after intragastric inoculation, thus establishing an animal model of gastrointestinal anthrax. All routes of infection progressed to the draining lymph nodes, spleen, lungs, and ultimately the blood. These discoveries were made possible through the development of a novel dynamic mouse model of B. anthracis infection using bioluminescent non-toxinogenic capsulated bacteria that can be visualized within the mouse in real-time, and demonstrate the value of in vivo imaging in the analysis of B. anthracis infection. Our data imply that previously unrecognized portals of bacterial entry demand more intensive investigation, and will significantly transform the current perception of inhalational, gastrointestinal, and cutaneous B. anthracis pathogenesis.


Assuntos
Antraz/microbiologia , Bacillus anthracis/crescimento & desenvolvimento , Gastroenteropatias/microbiologia , Nódulos Linfáticos Agregados/microbiologia , Faringe/microbiologia , Animais , Antraz/patologia , Bacillus anthracis/enzimologia , Bacillus anthracis/genética , Modelos Animais de Doenças , Gastroenteropatias/patologia , Exposição por Inalação , Luciferases/metabolismo , Luminescência , Medições Luminescentes , Linfonodos/microbiologia , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Cavidade Nasal/microbiologia , Cavidade Nasal/patologia , Organismos Geneticamente Modificados , Nódulos Linfáticos Agregados/patologia , Faringe/patologia , Pele/microbiologia , Pele/patologia , Esporos Bacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA