Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Nature ; 592(7854): 376-380, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33854251

RESUMO

The collective dynamics of topological structures1-6 are of interest from both fundamental and applied perspectives. For example, studies of dynamical properties of magnetic vortices and skyrmions3,4 have not only deepened our understanding of many-body physics but also offered potential applications in data processing and storage7. Topological structures constructed from electrical polarization, rather than electron spin, have recently been realized in ferroelectric superlattices5,6, and these are promising for ultrafast electric-field control of topological orders. However, little is known about the dynamics underlying the functionality of such complex extended nanostructures. Here, using terahertz-field excitation and femtosecond X-ray diffraction measurements, we observe ultrafast collective polarization dynamics that are unique to polar vortices, with orders-of-magnitude higher frequencies and smaller lateral size than those of experimentally realized magnetic vortices3. A previously unseen tunable mode, hereafter referred to as a vortexon, emerges in the form of transient arrays of nanoscale circular patterns of atomic displacements, which reverse their vorticity on picosecond timescales. Its frequency is considerably reduced (softened) at a critical strain, indicating a condensation (freezing) of structural dynamics. We use first-principles-based atomistic calculations and phase-field modelling to reveal the microscopic atomic arrangements and corroborate the frequencies of the vortex modes. The discovery of subterahertz collective dynamics in polar vortices opens opportunities for electric-field-driven data processing in topological structures with ultrahigh speed and density.

2.
Nano Lett ; 23(18): 8392-8398, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37682637

RESUMO

The origin of the pseudogap in many strongly correlated materials has been a longstanding puzzle. Here, we present experimental evidence that many-body interactions among small Holstein polarons, i.e., the formation of bipolarons, are primarily responsible for the pseudogap in (TaSe4)2I. After weak photoexcitation of the material, we observe the appearance of both dispersive (single-particle bare band) and flat bands (single-polaron sub-bands) in the gap by using time- and angle-resolved photoemission spectroscopy. Based on Monte Carlo simulations of the Holstein model, we propose that the melting of pseudogap and emergence of new bands originate from a bipolaron to single-polaron crossover. We also observe dramatically different relaxation times for the excited in-gap states in (TaSe4)2I (∼600 fs) compared with another 1D material Rb0.3MoO3 (∼60 fs), which provides a new method for distinguishing between pseudogaps induced by polaronic or Luttinger-liquid many-body interactions.

3.
J Am Chem Soc ; 145(8): 4683-4690, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795912

RESUMO

The valleytronic state found in group-VI transition-metal dichalcogenides such as MoS2 has attracted immense interest since its valley degree of freedom could be used as an information carrier. However, valleytronic applications require spontaneous valley polarization. Such an electronic state is predicted to be accessible in a new ferroic family of materials, i.e., ferrovalley materials, which features the coexistence of spontaneous spin and valley polarization. Although many atomic monolayer materials with hexagonal lattices have been predicted to be ferrovalley materials, no bulk ferrovalley material candidates have been reported or proposed. Here, we show that a new non-centrosymmetric van der Waals (vdW) semiconductor Cr0.32Ga0.68Te2.33, with intrinsic ferromagnetism, is a possible candidate for bulk ferrovalley material. This material exhibits several remarkable characteristics: (i) it forms a natural heterostructure between vdW gaps, a quasi-two-dimensional (2D) semiconducting Te layer with a honeycomb lattice stacked on the 2D ferromagnetic slab comprised of the (Cr, Ga)-Te layers, and (ii) the 2D Te honeycomb lattice yields a valley-like electronic structure near the Fermi level, which, in combination with inversion symmetry breaking, ferromagnetism, and strong spin-orbit coupling contributed by heavy Te element, creates a possible bulk spin-valley locked electronic state with valley polarization as suggested by our DFT calculations. Further, this material can also be easily exfoliated to 2D atomically thin layers. Therefore, this material offers a unique platform to explore the physics of valleytronic states with spontaneous spin and valley polarization in both bulk and 2D atomic crystals.

4.
J Am Chem Soc ; 144(30): 13903-13912, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35867482

RESUMO

The isostructural heteroanionic compounds ß-LiAsS2-xSex (x = 0, 0.25, 1, 1.75, 2) show a positive correlation between selenium content and second-harmonic response and greatly outperform the industry standard AgGaSe2. These materials crystallize in the noncentrosymmetric space group Cc as one-dimensional 1/∞ [AsQ2]- (Q = S, Se, S/Se) chains consisting of corner-sharing AsQ3 trigonal pyramids with charge-balancing Li+ atoms interspersed between the chains. LiAsS2-xSex melts congruently for 0 ≤ x ≤ 1.75, but when the Se content exceeds x = 1.75, crystallization is complicated by a phase transition. This behavior is attributed to the ß- to α-phase transition present in LiAsSe2, which is observed in the Se-rich compositions. The band gap decreases with increasing Se content, starting at 1.63 eV (LiAsS2) and reaching 1.06 eV (ß-LiAsSe2). Second-harmonic generation measurements as a function of wavelength on powder samples of ß-LiAsS2-xSex show that these materials exhibit significantly higher nonlinearity than AgGaSe2 (d36 = 33 pm/V), reaching a maximum of 61.2 pm/V for LiAsS2. In comparison, single-crystal measurements for LiAsSSe yielded a deff = 410 pm/V. LiAsSSe, LiAsS0.25Se1.75, and ß-LiAsSe2 show phase-matching behavior for incident wavelengths exceeding 3 µm. The laser-induced damage thresholds from two-photon absorption processes are on the same order of magnitude as AgGaSe2, with S-rich materials slightly outperforming AgGaSe2 and Se-rich materials slightly underperforming AgGaSe2.

5.
Nano Lett ; 21(14): 6095-6101, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34264679

RESUMO

The coexistence of ferroelectricity and metallicity seems paradoxical, since the itinerant electrons in metals should screen the long-range dipole interactions necessary for dipole ordering. The recent discovery of the polar metal LiOsO3 was therefore surprising [as discussed earlier in Y. Shi et al., Nat. Mater. 2013, 12, 1024]. It is thought that the coordination preferences of the Li play a key role in stabilizing the LiOsO3 polar metal phase, but an investigation from the combined viewpoints of core-state specificity and symmetry has yet to be done. Here, we apply the novel technique of extreme ultraviolet second harmonic generation (XUV-SHG) and find a sensitivity to the broken inversion symmetry in the polar metal phase of LiOsO3 with an enhanced feature above the Li K-edge that reflects the degree of Li atom displacement as corroborated by density functional theory calculations. These results pave the way for time-resolved probing of symmetry-breaking structural phase transitions on femtosecond time scales with element specificity.


Assuntos
Microscopia de Geração do Segundo Harmônico , Metais , Análise Espectral
6.
Biomacromolecules ; 22(5): 1901-1909, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33797889

RESUMO

A dielectric medium containing noncentrosymmetric domains can exhibit piezoelectric and second-harmonic generation (SHG) responses when an electric field is applied. Since many crystalline biopolymers have noncentrosymmetric structures, there has been a great deal of interest in exploiting their piezoelectric and SHG responses for electromechanical and electro-optic devices, especially owing to their advantages such as biocompatibility and low density. However, exact mechanisms or origins of such polarization responses of crystalline biopolymers remain elusive due to the convolution of responses from multiple domains with varying degrees of structural disorder or difficulty of ensuring the unidirectional alignment of noncentrosymmetric domains. In this study, we investigate the polarization responses of a noncentrosymmetric crystalline biopolymer, namely, unidirectionally aligned ß-chitin crystals interspersed in the amorphous protein matrix, which can be obtained naturally from tubeworm Lamellibrachia satsuma (LS) tube. The mechanisms governing polarization responses in different dynamic regimes covering optical (>1013 Hz), acoustic/ultrasonic (103-105 Hz), and low (10-2-102 Hz) frequencies are explained. Relationships between the polarization responses dominant in different frequencies are addressed. Also, electromechanical coupling responses, including piezoelectricity of the LS tube, are quantitatively discussed. The findings of this study can be applicable to other noncentrosymmetric crystalline biopolymers, elucidating their polarization responses.


Assuntos
Quitina , Eletricidade
7.
Nano Lett ; 20(5): 3306-3312, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32227973

RESUMO

Metalattices are artificial 3D solids, periodic on sub-100 nm length scales, that enable the functional properties of materials to be tuned. However, because of their complex structure, predicting and characterizing their properties is challenging. Here we demonstrate the first nondestructive measurements of the mechanical and structural properties of metalattices with feature sizes down to 14 nm. By monitoring the time-dependent diffraction of short wavelength light from laser-excited acoustic waves in the metalattices, we extract their acoustic dispersion, Young's modulus, filling fraction, and thicknesses. Our measurements are in excellent agreement with macroscopic predictions and potentially destructive techniques such as nanoindentation and scanning electron microscopy, with increased accuracy over larger areas. This is interesting because the transport properties of these metalattices do not obey bulk predictions. Finally, this approach is the only way to validate the filling fraction of metalattices over macroscopic areas. These combined capabilities can enable accurate synthesis of nanoenhanced materials.

8.
Opt Express ; 28(20): 30263-30274, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33114909

RESUMO

Today fiber lasers in the visible to near-infrared region of the spectrum are well known, however mid-infrared fiber lasers have only recently approached the same commercial availability and power output. There has been a push to fabricate optical fiber lasers out of crystalline materials which have superior mid-IR performance and the ability to directly generate mid-IR light. However, these materials cannot currently be fabricated into an optical fiber via traditional means. We have used high pressure chemical vapor deposition (HPCVD) to deposit Fe2+:ZnSe into a silica optical fiber template. These deposited structures have been found to exhibit laser threshold behavior and emit CW mid-IR laser light with a central wavelength of 4.12 µm. This is the first reported solid state fiber laser with direct laser emission generated beyond 4 µm and represents a new frontier of possibility in mid-IR laser development.

9.
Inorg Chem ; 59(6): 3579-3584, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32100540

RESUMO

A new polar and magnetic oxide, LuCrWO6, was synthesized under high pressure (6 GPa) and high temperature (1673 K). LuCrWO6 is isostructural with the previously reported polar YCrWO6 (SG: Pna21, no. 33). The ordering of CrO6 and WO6 octahedra in the edge-shared dimers induce the polar structure. The effective size of rare earth, Ln cation does not seem to affect the symmetry of LnCrWO6. Second harmonic generation measurements of LuCrWO6 confirmed the noncentrosymmetric character and strong piezoelectric domains are observed from piezoresponse force microscopy at room temperature. LuCrWO6 exhibits antiferromagnetic behavior, TN, of ∼18 K with a Weiss temperature of -30.7 K.

11.
Inorg Chem ; 58(23): 15953-15961, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31724852

RESUMO

The corundum-related oxides Mn2ScNbO6 and Mn2ScTaO6 were synthesized at high pressure and high temperature (6 GPa and 1475 K). Analysis of the synchrotron powder X-ray diffraction shows that Mn2ScNbO6 and Mn2ScTaO6 crystallize in Ni3TeO6-type noncentrosymmetric crystal structures with space group R3. The asymmetric crystal structure was confirmed by second harmonic generation measurement. X-ray absorption near-edge spectroscopies indicate formal valence states of Mn2+2Sc3+Nb5+O6 and Mn2+2Sc3+Ta5+O6, also supported by the calculated bond valence sums. Both samples are electrically insulating. Magnetic measurements indicate that Mn2ScNbO6 and Mn2ScTaO6 order ferrimagnetically at 53 and 50 K, respectively, and Mn2ScTaO6 is found to have a field-induced magnetic transition.

12.
Nature ; 502(7472): 532-6, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24132232

RESUMO

The miniaturization and integration of frequency-agile microwave circuits--relevant to electronically tunable filters, antennas, resonators and phase shifters--with microelectronics offers tantalizing device possibilities, yet requires thin films whose dielectric constant at gigahertz frequencies can be tuned by applying a quasi-static electric field. Appropriate systems such as BaxSr1-xTiO3 have a paraelectric-ferroelectric transition just below ambient temperature, providing high tunability. Unfortunately, such films suffer significant losses arising from defects. Recognizing that progress is stymied by dielectric loss, we start with a system with exceptionally low loss--Srn+1TinO3n+1 phases--in which (SrO)2 crystallographic shear planes provide an alternative to the formation of point defects for accommodating non-stoichiometry. Here we report the experimental realization of a highly tunable ground state arising from the emergence of a local ferroelectric instability in biaxially strained Srn+1TinO3n+1 phases with n ≥ 3 at frequencies up to 125 GHz. In contrast to traditional methods of modifying ferroelectrics-doping or strain-in this unique system an increase in the separation between the (SrO)2 planes, which can be achieved by changing n, bolsters the local ferroelectric instability. This new control parameter, n, can be exploited to achieve a figure of merit at room temperature that rivals all known tunable microwave dielectrics.

13.
Nano Lett ; 18(5): 3088-3095, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29631404

RESUMO

Polar domains arise in insulating ferroelectrics when free carriers are unable to fully screen surface-bound charges. Recently discovered binary and ternary polar metals exhibit broken inversion symmetry coexisting with free electrons that might be expected to suppress the electrostatic driving force for domain formation. Contrary to this expectation, we report the first direct observation of polar domains in single crystals of the polar metal Ca3Ru2O7. By a combination of mesoscale optical second-harmonic imaging and atomic-resolution scanning transmission electron microscopy, the polar domains are found to possess a quasi-two-dimensional slab geometry with a lateral size of ∼100 µm and thickness of ∼10 nm. Electronic structure calculations show that the coexistence of electronic and parity-lifting orders arise from anharmonic lattice interactions, which support 90° and 180° polar domains in a metal. Using in situ transmission electron microscopy, we also demonstrate a strain-tuning route to achieve ferroelastic switching of polar metal domains.

14.
J Am Chem Soc ; 140(46): 15690-15700, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30347981

RESUMO

Hybrid improper ferroelectricity, which utilizes nonpolar but ubiquitous rotational/tilting distortions to create polarization, offers an attractive route to the discovery of new ferroelectric and multiferroic materials because its activity derives from geometric rather than electronic origins. Design approaches blending group theory and first principles can be utilized to explore the crystal symmetries of ferroelectric ground states, but in general, they do not make accurate predictions for some important parameters of ferroelectrics, such as Curie temperature ( TC). Here, we establish a predictive and quantitative relationship between TC and the Goldschmidt tolerance factor, t, by employing n = 2 Ruddlesden-Popper (RP) A3B2O7 as a prototypical example of hybrid improper ferroelectrics. The focus is placed on an RP system, (Sr1- xCa x)3Sn2O7 ( x = 0, 0.1, and 0.2), which allows for the investigation of the purely geometric (ionic size) effect on ferroelectric transitions, due to the absence of the second-order Jahn-Teller active (d0 and 6s2) cations that often lead to ferroelectric distortions through electronic mechanisms. We observe a ferroelectric-to-paraelectric transition with TC = 410 K for Sr3Sn2O7. We also find that the TC increases linearly up to 800 K upon increasing the Ca2+ content, i.e., upon decreasing the value of t. Remarkably, this linear relationship is applicable to the suite of all known A3B2O7 hybrid improper ferroelectrics, indicating that the  TC correlates with the simple crystal chemistry descriptor, t, based on the ionic size mismatch. This study provides a predictive guideline for estimating the TC of a given material, which would complement the convergent group-theoretical and first-principles design approach.

16.
Phys Rev Lett ; 120(9): 096101, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29547337

RESUMO

Using time- and spatially resolved hard x-ray diffraction microscopy, the striking structural and electrical dynamics upon optical excitation of a single crystal of BaTiO_{3} are simultaneously captured on subnanoseconds and nanoscale within individual ferroelectric domains and across walls. A large emergent photoinduced electric field of up to 20×10^{6} V/m is discovered in a surface layer of the crystal, which then drives polarization and lattice dynamics that are dramatically distinct in a surface layer versus bulk regions. A dynamical phase-field modeling method is developed that reveals the microscopic origin of these dynamics, leading to gigahertz polarization and elastic waves traveling in the crystal with sonic speeds and spatially varying frequencies. The advances in spatiotemporal imaging and dynamical modeling tools open up opportunities for disentangling ultrafast processes in complex mesoscale structures such as ferroelectric domains.

18.
J Am Chem Soc ; 139(7): 2833-2841, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28161942

RESUMO

One synthetic modality for materials discovery proceeds by forming mixtures of two or more compounds. In transition metal oxides (TMOs), chemical substitution often obeys Vegard's principle, and the resulting structure and properties of the derived phase follow from its components. A change in the assembly of the components into a digital nanostructure, however, can stabilize new polymorphs and properties not observed in the constituents. Here we formulate and demonstrate a crystal-chemistry design approach for realizing digital TMOs without inversion symmetry by combining two centrosymmetric compounds, utilizing periodic anion-vacancy order to generate multiple polyhedra that together with cation order produce a polar structure. We next apply this strategy to two brownmillerite-structured TMOs known to display centrosymmetric crystal structures in their bulk, Ca2Fe2O5 and Sr2Fe2O5. We then realize epitaxial (SrFeO2.5)1/(CaFeO2.5)1 thin film superlattices possessing both anion-vacancy order and Sr and Ca chemical order at the subnanometer scale, confirmed through synchrotron-based diffraction and aberration corrected electron microscopy. Through a detailed symmetry analysis and density functional theory calculations, we show that A-site cation ordering lifts inversion symmetry in the superlattice and produces a polar compound. Our results demonstrate how control of anion and cation order at the nanoscale can be utilized to produce acentric structures markedly different than their constituents and open a path toward novel structure-based property design.

19.
Nat Mater ; 15(2): 204-10, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26657329

RESUMO

The fundamental challenge for designing transparent conductors used in photovoltaics, displays and solid-state lighting is the ideal combination of high optical transparency and high electrical conductivity. Satisfying these competing demands is commonly achieved by increasing carrier concentration in a wide-bandgap semiconductor with low effective carrier mass through heavy doping, as in the case of tin-doped indium oxide (ITO). Here, an alternative design strategy for identifying high-conductivity, high-transparency metals is proposed, which relies on strong electron-electron interactions resulting in an enhancement in the carrier effective mass. This approach is experimentally verified using the correlated metals SrVO3 and CaVO3, which, despite their high carrier concentration (>2.2 × 10(22) cm(-3)), have low screened plasma energies (<1.33 eV), and demonstrate excellent performance when benchmarked against ITO. A method is outlined to rapidly identify other candidates among correlated metals, and strategies are proposed to further enhance their performance, thereby opening up new avenues to develop transparent conductors.

20.
Inorg Chem ; 56(15): 9019-9024, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28737936

RESUMO

A(II)GeTeO6 (A = Mn, Cd, Pb), new non-centrosymmetric (NCS) honeycomb-layered tellurates, were synthesized and characterized. A(II)GeTeO6 (A = Mn, Cd, Pb) crystallize in trigonal space group P312 (No. 149) of edge-sharing Ge4+O6 and Te6+O6 octahedra, which form honeycomb-like-layers in the ab-plane with A(II) (A = Mn, Cd, Pb) cations located between the layers. Their crystal structures are PbSb2O6-related, and the ordering of Ge4+ and Te6+ in octahedral environment breaks the inversion symmetry of the parent PbSb2O6 structure. The size of A(II) cation in six coordination is an important factor to stabilize PbSb2O6-based structure. Temperature-dependent optical second harmonic generation measurements on A(II)GeTeO6 confirmed non-centrosymmetric character in the entire scanned temperature range (0 to 600 °C). The materials exhibit a powder SHG efficiency of ∼0.37 and ∼0.21 times of KH2PO4 for PbGeTeO6 and CdGeTeO6, respectively. Magnetic measurements of MnGeTeO6 indicate anti-ferromagnetic order at TN ≈ 9.4 K with Weiss temperature of -22.47 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA