Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(13): 3393-3396, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28289201

RESUMO

Development of a phenotyping platform capable of noninvasive biochemical sensing could offer researchers, breeders, and producers a tool for precise response detection. In particular, the ability to measure plant stress in vivo responses is becoming increasingly important. In this work, a Raman spectroscopic technique is developed for high-throughput stress phenotyping of plants. We show the early (within 48 h) in vivo detection of plant stress responses. Coleus (Plectranthus scutellarioides) plants were subjected to four common abiotic stress conditions individually: high soil salinity, drought, chilling exposure, and light saturation. Plants were examined poststress induction in vivo, and changes in the concentration levels of the reactive oxygen-scavenging pigments were observed by Raman microscopic and remote spectroscopic systems. The molecular concentration changes were further validated by commonly accepted chemical extraction (destructive) methods. Raman spectroscopy also allows simultaneous interrogation of various pigments in plants. For example, we found a unique negative correlation in concentration levels of anthocyanins and carotenoids, which clearly indicates that plant stress response is fine-tuned to protect against stress-induced damages. This precision spectroscopic technique holds promise for the future development of high-throughput screening for plant phenotyping and the quantification of biologically or commercially relevant molecules, such as antioxidants and pigments.


Assuntos
Coleus/química , Coleus/fisiologia , Análise Espectral Raman/métodos , Adaptação Fisiológica , Secas , Salinidade , Solo/química
3.
ACS Synth Biol ; 7(3): 774-781, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29439563

RESUMO

Traditional bioproduct engineering focuses on pathway optimization, yet is often complicated by product inhibition, downstream consumption, and the toxicity of certain products. Here, we present the co-compartmentation of biosynthesis and storage via a synthetic droplet as an effective new strategy to improve the bioproduct yield, with squalene as a model compound. A hydrophobic protein was designed and introduced into the tobacco chloroplast to generate a synthetic droplet for terpene storage. Simultaneously, squalene biosynthesis enzymes were introduced to chloroplasts together with the droplet-forming protein to co-compartmentalize the biosynthesis and storage of squalene. The strategy has enabled a record yield of squalene at 2.6 mg/g fresh weight without compromising plant growth. Confocal fluorescent microscopy imaging, stimulated Raman scattering microscopy, and droplet composition analysis confirmed the formation of synthetic storage droplet in chloroplast. The co-compartmentation of synthetic storage droplet with a targeted metabolic pathway engineering represents a new strategy for enhancing bioproduct yield.


Assuntos
Bioengenharia/métodos , Vias Biossintéticas , Compartimento Celular , Terpenos/metabolismo , Geraniltranstransferase/metabolismo , Células do Mesofilo/metabolismo , Plantas Geneticamente Modificadas , Esqualeno/metabolismo , Frações Subcelulares/metabolismo , Nicotiana/citologia , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
4.
Biotechnol J ; 11(12): 1657-1666, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27762502

RESUMO

Arundo donax L. is a promising biofuel feedstock in the Mediterranean region. Despite considerable interest in its genetic improvement, Arundo tissue culture and transformation remains arduous. The authors developed methodologies for cell- and tissue culture and genetic engineering in Arundo. A media screen was conducted, and a suspension culture was established using callus induced from stem axillary bud explants. DBAP medium, containing 9 µM 2,4-D and 4.4 µM BAP, was found to be the most effective medium among those tested for inducing cell suspension cultures, which resulted in a five-fold increase in tissue mass over 14 days. In contrast, CIM medium containing 13 µM 2,4-D, resulted in just a 1.4-fold increase in mass over the same period. Optimized suspension cultures were superior to previously-described solidified medium-based callus culture methods for tissue mass increase. Suspension cultures proved to be very effective for subsequent protoplast isolation. Protoplast electroporation resulted in a 3.3 ± 1.5% transformation efficiency. A dual fluorescent reporter gene vector enabled the direct comparison of the CAMV 35S promoter with the switchgrass ubi2 promoter in single cells of Arundo. The switchgrass ubi2 promoter resulted in noticeably higher reporter gene expression compared with that conferred by the 35S promoter in Arundo.


Assuntos
Técnicas de Cultura de Células/métodos , Poaceae/citologia , Poaceae/genética , Transformação Genética , Biomassa , Meios de Cultura/química , Genes Reporter , Panicum/genética , Plantas Geneticamente Modificadas/genética , Poaceae/crescimento & desenvolvimento , Polietilenoglicóis/química , Regiões Promotoras Genéticas , Suspensões , Técnicas de Cultura de Tecidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA