Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 35(10): 1881-1892, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35976686

RESUMO

p-Phenylenediamine (PPD) has been classified as a strong skin allergen, but when it comes to toxicological concerns, benzoquinone diamine (BQDI), the primary oxidation derivative of PPD, is frequently considered and was shown to covalently bind nucleophilic residues on model peptides. However, tests in solution are far from providing a reliable model, as the cutaneous metabolism of PPD is not covered. We now report the synthesis of two 13C substituted isotopomers of PPD, 1,4-(13C)p-phenylenediamine 1 and 2,5-(13C)p-phenylenediamine 2, and the investigation of their reactivity in reconstructed human epidermis (RHE) using the high resolution magic angle spinning (HRMAS) NMR technique. RHE samples were first treated with 1 or 2 and incubated for 1 to 48 h. Compared to the control, spectra clearly showed only the signals of 1 or 2 gradually decreasing with time to disappear after 48 h of incubation. However, the culture media of RHE incubated with 1 for 1 and 24 h, respectively, showed the presence of both monoacetylated- and diacetylated-PPD as major products. Therefore, the acetylation reaction catalyzed by N-acetyltransferase (NAT) enzymes appeared to be the main process taking place in RHE. With the aim of increasing the reactivity by oxidation, 1 and 2 were treated with 0.5 equiv of H2O2 prior to their application to RHE and incubated for different times. Under these conditions, new peaks having close chemical shifts to those of PPD-cysteine adducts previously observed in solution were detected. Under such oxidative conditions, we were thus able to detect and quantify cysteine adducts in RHE (maximum of 0.2 nmol/mg of RHE at 8 h of incubation) while no reaction with other nucleophilic amino acid residues could be observed.


Assuntos
Cisteína , Peróxido de Hidrogênio , Acetiltransferases/metabolismo , Alérgenos , Aminoácidos/metabolismo , Benzoquinonas/metabolismo , Meios de Cultura , Cisteína/química , Epiderme/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Fenilenodiaminas/metabolismo
2.
Chemistry ; 27(71): 17889-17899, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34761431

RESUMO

The synergistic functioning of redox-active components that emerges from prototypical 2,2'-di(N-methylpyrid-4-ylium)-1,1'-biphenyl is described. Interestingly, even if a trans conformation of the native assembly is expected, due to electrostatic repulsion between cationic pyridinium units, we demonstrate that cis conformation is equally energy-stabilized on account of a peculiar LUMO (SupLUMO) that develops through space, encompassing the two pyridiniums in a single, made-in-one-piece, electronic entity (superelectrophoric behavior). This SupLUMO emergence, with the cis species as superelectrophore embodiment, originates in a sudden change of electronic structure. This finding is substantiated by insights from solid state (single-crystal X-ray diffraction) and solution (NOE NMR and UV-vis-NIR spectroelectrochemistry) studies, combined with electronic structure computations. Electrochemistry shows that electron transfers are so strongly correlated that two-electron reduction manifests itself as a single-step process with a large potential inversion consistent with inner creation of a carbon-carbon bond (digital simulation). Besides, absence of reductive formation of dimers is a further indication of a preferential intramolecular reactivity determined by the SupLUMO interaction (cis isomer pre-organization). The redox-gated covalent bond, serving as electron reservoir, was studied via atropisomerism of the reduction product (VT NMR study). The overall picture derived from this in-depth study of 2,2'-di(N-methylpyrid-4-ylium)-1,1'-biphenyl proves that trans and cis species are worth considered as intrinsically sharply different, that is, as doubly-electrophoric and singly-superelectrophoric switchable assemblies, beyond conformational isomerism. Most importantly, the through-space-mediated SupLUMO may come in complement of other weak interactions encountered in Supramolecular Chemistry as a tool for the design of electroactive architectures.


Assuntos
Eletrônica , Cristalografia por Raios X , Eletroquímica , Espectroscopia de Ressonância Magnética , Conformação Molecular
3.
J Am Chem Soc ; 142(11): 5162-5176, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32101420

RESUMO

Molecular-level multielectron handling toward electrical storage is a worthwhile approach to solar energy harvesting. Here, a strategy which uses chemical bonds as electron reservoirs is introduced to demonstrate the new concept of "structronics" (a neologism derived from "structure" and "electronics"). Through this concept, we establish, synthesize, and thoroughly study two multicomponent "super-electrophores": 1,8-dipyridyliumnaphthalene, 2, and its N,N-bridged cyclophane-like analogue, 3. Within both of them, a covalent bond can be formed and subsequently broken electrochemically. These superelectrophores are based on two electrophoric (pyridinium) units that are, on purpose, spatially arranged by a naphthalene scaffold. A key characteristic of 2 and 3 is that they possess a LUMO that develops through space as the result of the interaction between the closely positioned electrophoric units. In the context of electron storage, this "super-LUMO" serves as an empty reservoir, which can be filled by a two-electron reduction, giving rise to an elongated C-C bond or "super-HOMO". Because of its weakened nature, this bond can undergo an electrochemically driven cleavage at a significantly more anodic-yet accessible-potential, thereby restoring the availability of the electron pair (reservoir emptying). In the representative case study of 2, an inversion of potential in both of the two-electron processes of bond formation and bond-cleavage is demonstrated. Overall, the structronic function is characterized by an electrochemical hysteresis and a chemical reversibility. This structronic superelectrophore can be viewed as the three-dimensional counterpart of benchmark methyl viologen (MV).

4.
ACS Infect Dis ; 8(8): 1509-1520, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35892255

RESUMO

The increase of antimicrobial resistance to conventional antibiotics is worldwide a major health problem that requires the development of new bactericidal strategies. Antimicrobial photodynamic therapy (a-PDT) that generates reactive oxygen species acting on multiple cellular targets is unlikely to induce bacterial resistance. This localized treatment requires, for safe and efficient treatment of nonsuperficial infections, a targeting photosensitizer excited in the near IR. To this end, a new conjugate consisting of an antimicrobial peptide linked to a π-extended porphyrin photosensitizer was designed for a-PDT. Upon irradiation at 720 nm, the conjugate has shown at micromolar concentration strong bactericidal action on both Gram-positive and Gram-negative bacteria. Moreover, this conjugate allows one to reach a low minimum bactericidal concentration with near IR excitation without inducing toxicity to skin cells.


Assuntos
Fotoquimioterapia , Porfirinas , Antibacterianos/farmacologia , Peptídeos Antimicrobianos , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA