Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 19(3)2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29495391

RESUMO

Anthocyanins are the resultant end-point metabolites of phenylapropanoid/flavonoid (F/P) pathway which is regulated at transcriptional level via a series of structural genes. Identifying the key genes and their potential interactions can provide us with the clue for novel points of intervention for improvement of the trait in strawberry. We profiled the expressions of putative regulatory and biosynthetic genes of cultivated strawberry in three developmental and characteristically colored stages of fruits of contrastingly anthocyanin rich cultivars: Tokun, Maehyang and Soelhyang. Besides FaMYB10, a well-characterized positive regulator, FaMYB5, FabHLH3 and FabHLH3-delta might also act as potential positive regulators, while FaMYB11, FaMYB9, FabHLH33 and FaWD44-1 as potential negative regulators of anthocyanin biosynthesis in these high-anthocyanin cultivars. Among the early BGs, Fa4CL7, FaF3H, FaCHI1, FaCHI3, and FaCHS, and among the late BGs, FaDFR4-3, FaLDOX, and FaUFGT2 showed significantly higher expression in ripe fruits of high anthocyanin cultivars Maehyang and Soelhyang. Multivariate analysis revealed the association of these genes with total anthocyanins. Increasingly higher expressions of the key genes along the pathway indicates the progressive intensification of pathway flux leading to final higher accumulation of anthocyanins. Identification of these key genetic determinants of anthocyanin regulation and biosynthesis in Korean cultivars will be helpful in designing crop improvement programs.


Assuntos
Antocianinas/biossíntese , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Pigmentos Biológicos/genética , Flavonoides/metabolismo , Fragaria/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Estudos de Associação Genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
2.
Molecules ; 22(12)2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29292765

RESUMO

The color of tomato (Solanum lycopersicum) fruit flesh is often used as an indicator of quality. Generally, fruit color is determined by the accumulation of carotenoids and flavonoids, along with concomitant degradation of chlorophylls during ripening. Several genes, such as phytoenesynthetase1 (Psy1), STAY-GREEN (SGR), and SlMYB12, have been extensively studied to elucidate the genes controlling fruit coloration. In this study, we observed low carotenoid levels without degradation of chlorophylls in green-fruited tomato caused by mutations in three genes, Psy1, SGR, and SlMYB12. We crossed two inbred lines, BUC30 (green-fruited) and KNR3 (red-fruited), to confirm the causal effects of these mutations on fruit coloration. The F2 population segregated for eight different fruit colors in the proportions expected for three pairs of gene, as confirmed by a chi-square test. Therefore, we developed a population of tomato with diverse fruit colors and used molecular markers to detect the genes responsible for the individual fruit colors. These newly-designed DNA-based markers can be used for selecting desired fruit color genotypes within adapted breeding materials and cultivars for breeding.


Assuntos
Frutas/genética , Solanum lycopersicum/genética , Sequência de Bases , Carotenoides/genética , Carotenoides/metabolismo , Clorofila/genética , Cor , Flavonoides/genética , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Mutação , Pigmentação , Proteínas de Plantas/genética
3.
Genes Cells ; 18(9): 823-37, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23819448

RESUMO

The budding yeast Saccharomyces cerevisiae contains active and inactive chromatin separated by boundary domains. Previously, we used genome-wide screening to identify 55 boundary-related genes. Here, we focus on Sgf73, a boundary protein that is a component of the Spt-Ada-Gcn5 acetyltransferase (SAGA) and SLIK (SAGA-like) complexes. These complexes have histone acetyltransferase (HAT) and histone deubiquitinase activity, and Sgf73 is one of the factors necessary to anchor the deubiquitination module. Domain analysis of Sgf73 was carried out, and the minimum region (373-402 aa) essential for boundary function was identified. This minimum region does not include the domain involved in anchoring the deubiquitination module, suggesting that the histone deubiquitinase activity of Sgf73 is not important for its boundary function. Next, Sgf73-mediated boundary function was analyzed in disruption strains in which different protein subunits of the SAGA/SLIK/ADA complexes were deleted. Deletion of ada2, ada3 or gcn5 (a HAT module component) caused complete loss of the boundary function of Sgf73. The importance of SAGA or SLIK complex binding to the boundary function of Sgf73 was also analyzed. Western blot analysis detected both the full-length and truncated forms of Spt7, suggesting that SAGA and SLIK complex formation is important for the boundary function of Sgf73.


Assuntos
Heterocromatina/metabolismo , Histona Acetiltransferases/metabolismo , Elementos Isolantes , Saccharomyces cerevisiae/metabolismo , Deleção de Genes , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Plants (Basel) ; 10(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34685858

RESUMO

Bacterial blight (BB) is caused by Xanthomonas oryzae pv. oryzae and is one of the most important diseases in rice. It results in significantly reduced productivity throughout all rice-growing regions of the world. Four BB resistance genes have been reported; however, introgression of a single gene into rice has not been able to sufficiently protect rice against BB infection. Pyramiding of effective BB resistance genes (i.e., Xa genes) into background varieties is a potential approach to controlling BB infection. In this study, combinations of four BB resistance genes, Xa4, xa5, xa13, and Xa21, were pyramided into populations. The populations were derived from crossing Ciherang (a widespread Indonesian rice variety) with IRBB60 (resistance to BB). Promising recombinants from the F6 generation were identified by scoring the phenotype against three virulent bacterial strains, C5, P6, and V, which cause widespread BB infection in most rice-growing countries. Pyramiding of genes for BB resistance in 265 recombinant introgressed lines (RILs) were confirmed through marker-assisted selection (MAS) of the F5 and F6 generations using gene-specific primers. Of these 265 RILs, 11, 34 and 45 lines had four, three, or two BB resistance genes, respectively. The RILs had pyramiding of two or three resistance genes, with the Xa4 resistance gene showing broad spectrum resistance against Xoo races with higher agronomic performance compared to their donor and recipients parents. The developed BB-resistant RILs have high yield potential to be further developed for cultivation or as sources of BB resistance donor material for varietal improvement in other rice lines.

5.
Plants (Basel) ; 7(4)2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30428562

RESUMO

Vegetables in Brassica are some of the world's most commonly cultivated plants and have a wide range of consumable plant organs. Improvement of this group of vegetables is limited at the species level due to limited genetic variability. Interspecies hybridization could be a powerful alternate tool for broadening the genetic variability of target traits. Embryo rescue technique is necessarily practiced in interspecies hybridization for protecting embryos from premature abortion. However, its success depends on the age of ovaries, shape of embryos, and the effect of female genotype. In this study, we carried out a wide range of interspecies crossing for introgressing target traits (orange/yellow color in cabbage and anthocyanin in Chinese cabbage) and optimizing the appropriate age of ovaries, the shape of embryo, and the suitable genotypes of such crosses. We observed that 15 DAP (days after pollination) was the best for embryo rescue in the diploid-diploid (Brassica rapa × B. oleracea) crosses, while 20 DAP was optimum for amphidiploid-diploid (B. napus/B. juncea × B. rapa) crosses. Cotyledonary shape of embryos and genotypes of amphidiploid species were the best for successful plant regeneration in interspecies crosses. We successfully selected plants with desired orange/yellow inner leaves for cabbage and higher anthocyanin in Chinese cabbage. The results of this study have the potential to be applied for the efficient production of interspecific hybrids and to develop Brassica vegetables with new traits, which could have potential for the enrichment of the human diet.

6.
J Biol Res (Thessalon) ; 25: 19, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30505808

RESUMO

BACKGROUND: Anthocyanins are plant secondary metabolites with key roles in attracting insect pollinators and protecting against biotic and abiotic stresses. They have potential health-promoting effects as part of the human diet. Anthocyanin biosynthesis has been elucidated in many species, enabling the development of anthocyanin-enriched fruits, vegetables, and grains; however, few studies have investigated Brassica napus anthocyanin biosynthesis. RESULTS: We developed a high-anthocyanin resynthesized B. napus line, Rs035, by crossing anthocyanin-rich B. rapa (A genome) and B. oleracea (C genome) lines, followed by chromosome doubling. We identified and characterized 73 and 58 anthocyanin biosynthesis genes in silico in the A and C genomes, respectively; these genes showed syntenic relationships with 41 genes in Arabidopsis thaliana and B. napus. Among the syntenic genes, twelve biosynthetic and six regulatory genes showed transgressively higher expression in Rs035, and eight structural genes and one regulatory gene showed additive expression. We identified three early-, four late-biosynthesis pathways, three transcriptional regulator genes, and one transporter as putative candidates enhancing anthocyanin accumulation in Rs035. Principal component analysis and Pearson's correlation coefficients corroborated the contribution of these genes to anthocyanin accumulation. CONCLUSIONS: Our study lays the foundation for producing high-anthocyanin B. napus cultivars. The resynthesized lines and the differentially expressed genes we have identified could be used to transfer the anthocyanin traits to other commercial rapeseed lines using molecular and conventional breeding.

7.
J Biochem ; 155(3): 159-71, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24307402

RESUMO

Eukaryotic chromosomes are organized into heterochromatin and euchromatin domains. Heterochromatin domains are transcriptionally repressed and prevented from spreading into neighbouring genes by chromatin boundaries. Previously, we identified 55 boundary-related genes in Saccharomyces cerevisiae. In this study, we describe the characterization of one of these boundary genes, named SGF29, which was previously reported as a component of the SAGA, SLIK, ADA and HAT-A2 complex. A domain analysis of Sgf29 identified two minimal regions that can function as individual boundaries. The N-terminal minimal region comprising amino acids 1-12, which has not been defined as a functional domain, showed stronger boundary formation ability than the C-terminal minimal region comprising amino acids 110-255, which contains Tudor domains. Together with Ada2, Ada3 and Sgf29, which are all components of SAGA, Gcn5 acetylates multiple lysine residues on nucleosomal histone H3, which is associated with an open chromatin structure. However, the results presented in this study suggest that the boundary formation ability of the Sgf29 minimal regions is independent of Gcn5. An in vivo analysis also revealed that Sgf29 and Gcn5 perform distinct functions at native telomere boundary regions on the chromosome.


Assuntos
Heterocromatina/metabolismo , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Genes Fúngicos , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Relação Estrutura-Atividade , Telômero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA