Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37836368

RESUMO

The strength of metals and alloys at elevated temperatures typically decreases due to the recovery, recrystallization, grain growth, and growth of second-phase particles. We report here a cold-worked Cu-Al2O3 composite did not recrystallize up to a temperature of 0.83Tm of Cu. The composite was manufactured through the internal oxidation process of dilute Cu-0.15 wt.% Al alloy and was characterized by transmission electron microscopy to study the nature of oxide precipitates. As a result of internal oxidation, a small volume fraction (1%) of Al2O3 particles forms. In addition, a high density of extremely fine (2-5 nm) Cu2O particles has been observed to form epitaxially within the elongated Cu grains. These finely dispersed second-phase Cu2O particles enhance the Zener drag significantly by three orders of magnitude as compared to Al2O3 particles and retain their original size and spacing at elevated temperatures. This limits the grain boundary migration and the nucleation of defect-free regions of different orientations and inhibits the recrystallization process at elevated temperatures. In addition, due to the limited grain boundary migration, a bundle of stacking faults appears instead of annealing twins. This investigation has led to a better understanding of how to prevent the recrystallization process of heavily deformed metallic material containing oxide particles.

2.
Langmuir ; 26(10): 7604-13, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20121172

RESUMO

We report a simple and efficient synthetic method to prepare gold nanoparticles (AuNPs) in aqueous phase using HAuCl(4) and poly(ethylene glycol) (PEG) ligands appended with bidentate anchoring groups. Our approach provides narrow size distribution nanocrystals over the size range between 1.5 and 18 nm; this range is much wider than those achieved using other small molecules and polymer ligands. The NP size was simply controlled by varying the molar ratio of Au-to-PEG ligand precursors. Further passivation of the as-prepared AuNPs permitted in situ functionalization of the NP surface with the desired functional groups. The prepared AuNPs exhibit remarkable stability in the presence of high salt concentrations, over a wide range of pHs (2-13), and a strong resistance to competition from dithiothreitol (DTT). These results are a clear manifestation of the advantages offered by our synthetic approach to prepare biocompatible AuNPs, where modular, multifunctional ligands presenting strong anchoring groups and hydrophilic PEG chains are used.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Água/química , Ligantes , Tamanho da Partícula , Solubilidade , Propriedades de Superfície
3.
Chem Commun (Camb) ; 54(16): 1956-1959, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29319069

RESUMO

Water soluble metallic nanoparticles are being developed for a variety of roles ranging from catalysis to drug delivery and as potential contrast agents. We demonstrate direct synthesis of high-quality water-soluble Au, Ag, Pt, Pd, Cu and alloyed AuPt nanoparticles as well as ligand-exchange of FePt, cubic Pt and Au/Pt core/shell nanoparticles using bidentate dithiolane PEG as a universal ligand. Simple chemistry can greatly expand the applications of metal nanoparticles.

4.
Sci Rep ; 6: 35538, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27774984

RESUMO

Luminescent gold nanocrystals (AuNCs) are a recently-developed material with potential optic, electronic and biological applications. They also demonstrate energy transfer (ET) acceptor/sensitization properties which have been ascribed to Förster resonance energy transfer (FRET) and, to a lesser extent, nanosurface energy transfer (NSET). Here, we investigate AuNC acceptor interactions with three structurally/functionally-distinct donor classes including organic dyes, metal chelates and semiconductor quantum dots (QDs). Donor quenching was observed for every donor-acceptor pair although AuNC sensitization was only observed from metal-chelates and QDs. FRET theory dramatically underestimated the observed energy transfer while NSET-based damping models provided better fits but could not reproduce the experimental data. We consider additional factors including AuNC magnetic dipoles, density of excited-states, dephasing time, and enhanced intersystem crossing that can also influence ET. Cumulatively, data suggests that AuNC sensitization is not by classical FRET or NSET and we provide a simplified distance-independent ET model to fit such experimental data.

5.
J Phys Chem C Nanomater Interfaces ; 118(17): 9239-9250, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24817922

RESUMO

Charge transfer processes with semiconductor quantum dots (QDs) have generated much interest for potential utility in energy conversion. Such configurations are generally nonbiological; however, recent studies have shown that a redox-active ruthenium(II)-phenanthroline complex (Ru2+-phen) is particularly efficient at quenching the photoluminescence (PL) of QDs, and this mechanism demonstrates good potential for application as a generalized biosensing detection modality since it is aqueous compatible. Multiple possibilities for charge transfer and/or energy transfer mechanisms exist within this type of assembly, and there is currently a limited understanding of the underlying photophysical processes in such biocomposite systems where nanomaterials are directly interfaced with biomolecules such as proteins. Here, we utilize redox reactions, steady-state absorption, PL spectroscopy, time-resolved PL spectroscopy, and femtosecond transient absorption spectroscopy (FSTA) to investigate PL quenching in biological assemblies of CdSe/ZnS QDs formed with peptide-linked Ru2+-phen. The results reveal that QD quenching requires the Ru2+ oxidation state and is not consistent with Förster resonance energy transfer, strongly supporting a charge transfer mechanism. Further, two colors of CdSe/ZnS core/shell QDs with similar macroscopic optical properties were found to have very different rates of charge transfer quenching, by Ru2+-phen with the key difference between them appearing to be the thickness of their ZnS outer shell. The effect of shell thickness was found to be larger than the effect of increasing distance between the QD and Ru2+-phen when using peptides of increasing persistence length. FSTA and time-resolved upconversion PL results further show that exciton quenching is a rather slow process consistent with other QD conjugate materials that undergo hole transfer. An improved understanding of the QD-Ru2+-phen system can allow for the design of more sophisticated charge-transfer-based biosensors using QD platforms.

6.
ACS Nano ; 5(8): 6434-48, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21774456

RESUMO

Numerous studies have examined how the cellular delivery of gold nanoparticles (AuNPs) is influenced by different physical and chemical characteristics; however, the complex relationship between AuNP size, uptake efficiency and intracellular localization remains only partially understood. Here we examine the cellular uptake of a series of AuNPs ranging in diameter from 2.4 to 89 nm that are synthesized and made soluble with poly(ethylene glycol)-functionalized dithiolane ligands terminating in either carboxyl or methoxy groups and covalently conjugated to cell penetrating peptides. Following synthesis, extensive physical characterization of the AuNPs was performed with UV-vis absorption, gel electrophoresis, zeta potential, dynamic light scattering, and high resolution transmission electron microscopy. Uptake efficiency and intracellular localization of the AuNP-peptide conjugates in a model COS-1 cell line were probed with a combination of silver staining, fluorescent counterstaining, and dual mode fluorescence coupled to nonfluorescent scattering. Our findings show that AuNP cellular uptake is directly dependent on the surface display of the cell-penetrating peptide and that the ultimate intracellular destination is further determined by AuNP diameter. The smallest 2.4 nm AuNPs were found to localize in the nucleus, while intermediate 5.5 and 8.2 nm particles were partially delivered into the cytoplasm, showing a primarily perinuclear fate along with a portion of the nanoparticles appearing to remain at the membrane. The 16 nm and larger AuNPs did not enter the cells and were located at the cellular periphery. A preliminary assessment of cytotoxicity demonstrated minimal effects on cellular viability following peptide-mediated uptake.


Assuntos
Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Ouro/química , Ouro/metabolismo , Nanopartículas Metálicas/química , Tamanho da Partícula , Polietilenoglicóis/química , Animais , Transporte Biológico , Células COS , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Ouro/toxicidade , Espaço Intracelular/metabolismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA