Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Neurobiol ; 43(7): 3061-3080, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37165139

RESUMO

Scaffold proteins Striatin and SG2NA assemble kinases and phosphatases into the signalling complexes called STRIPAK. Dysfunctional STRIPAKs cause cancer, cerebral cavernous malformations, etc. DJ-1, a sensor for oxidative stress, has long been associated with the Parkinson's disease, cancer, and immune disorders. SG2NA interacts with DJ-1 and Akt providing neuroprotection under oxidative stress. To dissect the role of SG2NA and DJ-1 in neuronal pathobiology, rat midbrain extracts were immunoprecipitated with SG2NA and sixty-three interacting proteins were identified. BN-PAGE followed by the LC-MS/MS showed 1030 comigrating proteins as the potential constituents of the multimeric complexes formed by SG2NA. Forty-three proteins were common between those identified by co-immunoprecipitation and the BN-PAGE. Co-immunoprecipitation with DJ-1 identified 179 interacting partners, of which forty-one also interact with SG2NA. Among those forty-one proteins immunoprecipitated with both SG2NA and DJ-1, thirty-nine comigrated with SG2NA in the BN-PAGE, and thus are bonafide constituents of the supramolecular assemblies comprising both DJ-1 and SG2NA. Among those thirty-nine proteins, seven are involved in mitochondrial oxidative phosphorylation. In rotenone-treated rats having Parkinson's like symptoms, the levels of both SG2NA and DJ-1 increased in the mitochondria; and the association of SG2NA with the electron transport complexes enhanced. In the hemi-Parkinson's model, where the rats were injected with 6-OHDA into the midbrain, the occupancy of SG2NA and DJ-1 in the mitochondrial complexes also increased. Our study thus reveals a new family of potential STRIPAK assemblies involving both SG2NA and DJ-1, with key roles in protecting midbrain from the oxidative stress.


Assuntos
Neoplasias , Doença de Parkinson , Animais , Ratos , Cromatografia Líquida , Elétrons , Mesencéfalo , Estresse Oxidativo , Espectrometria de Massas em Tandem
2.
Mol Cell Biochem ; 477(6): 1653-1668, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35230605

RESUMO

Striatin and SG2NA are scaffold proteins that form signaling complexes called STRIPAK. It has been associated with developmental abnormalities, cancer, and several other diseases. Our earlier studies have shown that SG2NA forms a complex with the cancer-associated protein DJ-1 and the signaling kinase Akt, promoting cancer cell survival. In the present study, we used bioinformatics analyses to confirm the existence of two isoforms of human SG2NA, i.e., 78 and 87 kDas. In addition, several smaller isoforms like 35 kDa were also seen in western blot analyses of human cell lysates. The expression of these isoforms varies between different cancer cell lines of human origin. Also, the protein levels do not corroborate with its transcript levels, suggesting a complex regulation of its expression. In breast tumor tissues, the expression of the 35 and 78 kDa isoforms was higher as compared to the adjacent normal tissues, while the 87 kDa isoform was found in the breast tumor tissues only. With the progression of stages of breast cancer, while the expression of 78 kDa isoform decreased, 87 kDa became undetectable. In co-immunoprecipitation assays, the profile of the SG2NA interactome in breast tumors vis-à-vis adjacent normal breast tissues showed hundreds of common proteins. Also, some proteins were interacted with SG2NA in breast tumor tissues only. We conclude that SG2NA is involved in diverse cellular pathways and has roles in cellular reprogramming during tumorigenesis of the breast.


Assuntos
Neoplasias da Mama , Proteínas de Ligação a Calmodulina , Autoantígenos/metabolismo , Neoplasias da Mama/genética , Proteínas de Ligação a Calmodulina/metabolismo , Feminino , Humanos , Isoformas de Proteínas/metabolismo , Transdução de Sinais
3.
Mol Cell Biochem ; 476(5): 2047-2059, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33515200

RESUMO

Mitoapocynin is a triphenylphosphonium conjugated derivative of apocynin that specifically locates to the mitochondria. It has been developed as a mitochondrially targeted therapeutic antioxidant. We attempted to attenuate the mitochondrial ROS induced in H9c2 cardiac myoblast cells treated with norepinephrine. Mitoapocynin was a poor quencher of total ROS as detected by the fluoroprobe DCFH-DA. Using mitochondrial superoxide specific probe MitoSoxRed, we found that 5-10 µM mitoapocynin itself induces superoxide over and above that is generated by the norepinephrine treatment. A supposedly control molecule to mitoapocynin, the synthetic compound PhC11TPP, having the triphenylphosphonium group and a benzene moiety with C11 aliphatic chain spacer was also found to be a robust inducer of mitochondrial ROS. Subsequent assays with several cell lines viz., NIH3T3, HEK293, Neuro2A, MCF-7 and H9c2, showed that prolonged exposure to mitoapocynin induces cell death by apoptosis that can be partially prevented by the general antioxidant N-acetyl cysteine. Analyses of mitochondrial electron transport complexes by Blue Native Polyacrylamide gel electrophoresis showed that both mitoapocynin and PhC11TPP disrupt the mitochondrial Complex I and V, and in addition, PhC11TPP also damages the Complex IV. Our data thus highlights the limitations of the therapeutic use of mitoapocynin as an antioxidant.


Assuntos
Acetofenonas/farmacologia , Apoptose/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mioblastos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Células NIH 3T3
4.
Mol Cell Biochem ; 476(2): 633-648, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33083950

RESUMO

SG2NA is a protein of the striatin family that organizes STRIPAK complexes. It has splice variants expressing differentially in tissues. Its 78 kDa isoform regulates cell cycle, maintains homeostasis in the endoplasmic reticulum, and prevents oxidative injuries. The 35 kDa variant is devoid of the signature WD-40 repeats in the carboxy terminal, and its function is unknown. We expressed it in NIH 3T3 cells that otherwise express 78 kDa variant only. These cells (35 EE) have altered morphology, faster rate of migration, and enhanced growth as measured by the MTT assay. Similar phenotypes were also seen in cells where the endogenous 78 kDa isoform was downregulated by siRNA (78 KD). Proteomic analyses showed that several cancer-associated proteins are modulated in both 35 EE and 78 KD cells. The 35 EE cells have diffused actin fibers, distinctive ultrastructure, reduced sialylation, and increased expression of MMP2 & 9. The 78 KD cells also had diffused actin fibers and an upregulated expression of MMP2. In both cells, markers epithelial to mesenchymal transition (EMT) viz, E- & N-cadherins, ß-catenin, slug, vimentin, and ZO-1 were modulated partially in tune with the EMT process. Since NIH 3T3 cells are mesenchymal, we also expressed 35 kDa SG2NA in MCF-7 cells of epithelial origin. In these cells (MCF-7-35), the actin fibers were also diffused and the modulation of the markers was more in tune with the EMT process. However, unlike in 35 EE cells, in MCF-7-35 cells, membrane sialylation rather increased. We infer that ectopic expression of 35 kDa and downregulation of 78 kDa SG2NAs partially induce transformed phenotypes.


Assuntos
Autoantígenos/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Sialiltransferases/metabolismo , Animais , Membrana Celular/metabolismo , Membrana Celular/patologia , Expressão Ectópica do Gene , Transição Epitelial-Mesenquimal , Camundongos , Células NIH 3T3 , Isoformas de Proteínas , Proteômica/métodos
5.
Int J Cancer ; 146(7): 1993-2006, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31709528

RESUMO

Regulatory T cells (Tregs) are crucial for the maintenance of peripheral tolerance, but they also limit beneficial responses through cancer-induced immunoediting. The roles of Treg subsets in cervical squamous cell carcinoma (CSCC) are currently unknown. Here, we aimed to perform an extensive study with an increased resolution of the Treg compartment in the peripheral blood and tumor tissues of CSCC patients. We first identified that an HLADRhi Treg population in the peripheral blood was significantly increased in CSCC patients compared to precancer patients and healthy donors. We found that HLADRhi Tregs express high levels of a panel of inhibition and activation markers and the TCR-responsive transcription factors BATF and IRF4. However, this Treg subset showed reduced calcium influx after TCR crosslinking. In addition, HLADRhi Tregs are highly proliferative and vulnerable to apoptosis. Further studies demonstrated that the HLADRhi Tregs display high levels of suppressive activity. Quantitative multiplexed immunohistochemistry revealed that an increase in the number of tumor-infiltrating HLADRhi Tregs is associated with unfavorable classical risk parameters of advanced disease stage and stromal invasion. Context-based quantification revealed that a high frequency of stromal HLADRhi Tregs in patients is significantly associated with worse progression-free survival. In the current study, we characterized a population of highly activated and immunosuppressive HLADRhi Tregs in CSCC patients. An increased HLADRhi Treg frequency may be a potential biomarker to stratify CSCC patients and evaluate therapeutic efficacies in personalized immuno-oncology studies.


Assuntos
Antígenos HLA-DR/metabolismo , Imunomodulação , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Neoplasias do Colo do Útero/etiologia , Neoplasias do Colo do Útero/metabolismo , Apoptose , Biomarcadores , Progressão da Doença , Feminino , Antígenos HLA-DR/imunologia , Humanos , Imuno-Histoquímica , Ativação Linfocitária , Contagem de Linfócitos , Linfócitos do Interstício Tumoral/patologia , Fenótipo , Prognóstico , Microambiente Tumoral/imunologia , Neoplasias do Colo do Útero/mortalidade
6.
BMC Cancer ; 20(1): 173, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32131750

RESUMO

BACKGROUND: Alterations in peripheral blood lymphocytes in cervical cancer have been reported, although conflicting views exist. The present study investigated the distributions of lymphocyte subsets in tumor tissue and peripheral blood samples from cervical cancer patients and precancerous lesion patients, and evaluated the correlations of lymphocyte subsets with clinicopathological and prognostic variables. METHODS: A total of 44 patients with stage IB1-IIA2 cervical cancer and 13 precancerous lesion patients were included. Lymphocytes were collected from the tumor tissue and the peripheral blood, and isolated by Lymphoprep density gradient centrifugation. The percentages of lymphocyte subsets were quantified by flow cytometry analysis, and the differences between lymphocyte subsets in the tumor tissue and peripheral blood were compared by SPSS. In addition, the relationships between lymphocyte subsets and clinicopathological and prognostic variables were analyzed. RESULTS: Our results revealed that the amount of total T lymphocytes, CD8+ T cells, granulocytes, pDCs, CD16+ monocytes and CD56high NK cells were significantly higher in the tumor tissue than in the peripheral blood in the cervical cancer patients, while those of CD4+ T cells, CD4+/CD8+ cell ratio, rdT cells, BDCA1+ mDCs, total monocytes, CD14+ monocytes, NK cells and CD56low NK cells exhibited the opposite trend (p < 0.05). The levels of total pDCs and BDCA1+ mDCs in the peripheral blood were significantly lower in the cervical cancer patients than in the precancerous lesion patients, while the proportion of CD16+ monocytes was elevated (p < 0.05). In addition, some lymphocyte subsets, especially CD4+ cells and CD8+ cells, and the CD4+/CD8+ cell ratio were closely associated with clinicopathological and prognostic parameters. CONCLUSIONS: These results suggested that distinct alterations in infiltrating lymphocyte subsets occurred in the tumor and were associated with clinicopathological and prognostic parameters. Systemic impairment of the immune system may occur in the antitumor response of cervical cancer patients.


Assuntos
Leucócitos Mononucleares/imunologia , Subpopulações de Linfócitos/metabolismo , Neoplasias do Colo do Útero/patologia , Adulto , Idoso , Feminino , Humanos , Contagem de Linfócitos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Neoplasias do Colo do Útero/imunologia , Adulto Jovem
7.
Clin Sci (Lond) ; 134(7): 711-726, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32202617

RESUMO

Tumor-infiltrating PD-1hi dysfunctional CD8+ T cells have been identified in several tumors but largely unexplored in breast cancer (BC). Here we aimed to extensively explore PD-1hiCD8+ T cells in BC, focusing on the triple-negative BC (TNBC) subtype. Flow cytometry was used to study the phenotypes and functions of CD8+ T-cell subsets in peripheral blood and surgical specimens from treatment-naive BC patients. RNA-seq expression data generated to dissect the molecular features of tumoral PD-1neg, PD-1lo and PD-1hi CD8+ T cells. Further, the associations between tumoral PD-1hi CD8+ T cells and the clinicopathological features of 503 BC patients were explored. Finally, multiplexed immunohistochemistry (mIHC) was performed to evaluate in situ PD-1hiCD8+ T cells on the tissue microarrays (TMAs, n=328) for prognostic assessment and stratification of TNBC patients. PD-1hiCD8+ T cells found readily detectable in tumor tissues but rarely in peripheral blood. These cells shared the phenotypic and molecular features with exhausted and tissue-resident memory T cells (TRM) with a skewed TCR repertoire involvement. Interestingly, PD-1hiCD8+ T cells are in the state of exhaustion characterized by higher T-BET and reduced EOMES expression. PD-1hiCD8+ T cells found preferentially enriched within solid tumors, but predominant stromal infiltration of PD-1hiCD8+ T subset was associated with improved survival in TNBC patients. Taken together, tumoral PD-1hiCD8+ T-cell subpopulation in BC is partially exhausted, and their abundance signifies 'hot' immune status with favorable outcomes. Reinvigorating this population may provide further therapeutic opportunities in TNBC patients.


Assuntos
Biomarcadores Tumorais/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Receptor de Morte Celular Programada 1/imunologia , Neoplasias de Mama Triplo Negativas/imunologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Codificadores dos Receptores de Linfócitos T , Humanos , Memória Imunológica , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Pessoa de Meia-Idade , Fenótipo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Estudos Prospectivos , Fatores de Risco , Fatores de Tempo , Transcriptoma , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/cirurgia , Microambiente Tumoral
8.
Mol Cell Biochem ; 464(1-2): 205-219, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31792650

RESUMO

Catestatin (CST) is a catecholamine release-inhibitory peptide secreted from the adrenergic neurons and the adrenal glands. It regulates the cardiovascular functions and it is associated with cardiovascular diseases. Though its mechanisms of actions are not known, there are evidences of cross-talk between the adrenergic and CST signaling. We hypothesized that CST moderates the adrenergic overdrive and studied its effects on norepinephrine-mediated hypertrophic responses in H9c2 cardiac myoblasts. CST alone regulated the expression of a number of fetal genes that are induced during hypertrophy. When cells were pre-treated CST, it blunted the modulation of those genes by norepinephrine. Norepinephrine (2 µM) treatment also increased cell size and enhanced the level of Troponin T in the sarcomere. These effects were attenuated by the treatment with CST. CST attenuated the immediate generation of ROS and the increase in glutathione peroxidase activity induced by norepinephrine treatment. Expression of fosB and AP-1 promoter-reporter constructs was used as the endpoint readout for the interaction between the CST and adrenergic signals at the gene level. It showed that CST largely attenuates the stimulatory effects of norepinephrine and other mitogenic signals through the modulation of the gene regulatory modules in a characteristic manner. Depending upon the dose, the signaling by CST appears to be disparate, and at 10-25 nM doses, it primarily moderated the signaling by the ß1/2-adrenoceptors. This study, for the first time, provides insights into the modulation of adrenergic signaling in the heart by CST.


Assuntos
Cardiomegalia/tratamento farmacológico , Cromogranina A/farmacologia , Mioblastos Cardíacos/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptor A2B de Adenosina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Linhagem Celular , Humanos , Mioblastos Cardíacos/patologia
9.
Cell Biol Int ; 44(2): 637-650, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31773824

RESUMO

SG2NA, a WD40 repeat protein of the Striatin subfamily, has four splicing and one messenger RNA edit variants. It is fast emerging as a scaffold for multimeric signaling complexes with roles in tissue development and disease. The green fluorescent protein (GFP)-tagged variants of SG2NA were ectopically expressed in NIH3T3 cells and their modulation by serum and GSK3ß-ERK signaling were monitored. The 87, 78, and 35 kDa variants showed a biphasic modulation by serum till 24 h but the 52 kDa variant remained largely unresponsive. Inhibition of phosphatases by okadaic acid increased the levels of the endogenous 78 kDa and the ectopically expressed GFP-tagged 87 and 78 kDa SG2NAs. Contrastingly, okadaic acid treatment reduced the level of GFP-tagged 35 kDa SG2NA, suggesting differential modes of their stability through phosphorylation-dephosphorylation. The inhibition of GSK3ß by LiCl showed a gradual decrease in the levels of 78 kDa. In the case of the other variants viz, GFP-tagged 35, 52, and 87 kDa, inhibition of GSK3ß caused an initial increase followed by a decrease with a subtle difference in kinetics and intensities. Similar results were also seen upon inhibition of GSK3ß by small interfering RNA. All the variants showed an increase followed by a decrease upon inhibition of extracellular-signal-regulated-kinase (ERK). These variants are localized in the plasma membrane, endoplasmic reticulum, mitochondria, and the nucleus with different propensities and no discernable subcellular distribution was seen upon stimulation by serum and the inhibition of phosphatases, GSK3ß, and ERK. Taken together, the variants of SG2NA are modulated by the kinase-phosphatase network in a similar but characteristic manner.


Assuntos
Autoantígenos/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Frações Subcelulares/metabolismo , Sequência de Aminoácidos , Animais , Autoantígenos/genética , Proteínas de Ligação a Calmodulina/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Glicogênio Sintase Quinase 3 beta/genética , Camundongos , Células NIH 3T3 , Fosforilação , Isoformas de Proteínas , Homologia de Sequência , Transdução de Sinais
10.
Ann Rheum Dis ; 78(8): 1090-1100, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31142473

RESUMO

OBJECTIVES: A population of atypical memory B cells (AtMs) are greatly expanded in patients with active lupus, but their generation and pathophysiological roles are poorly defined. The aim of this study was to comprehensively characterise lupus AtMs with a purpose to identify therapeutic clues to target this B cell population in lupus. METHODS: Peripheral B cell subsets were measured by flow cytometry. Sorting-purified B cell subsets were subject to RNA sequencing and functional studies. Plasma cytokines and secreted immunoglobulins were detected by Luminex or ELISA. In situ renal B cells were detected by multiplexed immunohistochemistry. RESULTS: CD24-CD20hi AtMs were strongly increased in two Chinese cohorts of patients with treatment-naïve lupus. Gene expression profile indicated that B cell signalling and activation, lipid/saccharide metabolism and endocytosis pathways were abnormally upregulated in lupus AtMs. In addition, the mammalian target of rapamycin complex 1 (mTORC1) pathway was remarkably activated in lupus AtMs, and blocking mTORC1 signalling by rapamycin abolished the generation of T-bet+ B cells and terminal differentiation of lupus AtMs. Furthermore, lupus AtMs displayed a dysfunctional phenotype, underwent accelerated apoptosis, poorly co-stimulated T cells and produced proinflammatory cytokines. Interestingly, lupus AtMs were in a paradoxically differentiated status with markers pro and against terminal differentiation and enriched with antinucleosome reactivity. Finally, AtMs were accumulated in the kidneys of patients with lupus nephritis and associated with disease severity. CONCLUSIONS: These findings demonstrated that mTORC1-overactivated lupus AtMs are abnormally differentiated with metabolic and functional dysregulations. Inhibiting mTORC1 signalling might be an attractive option to target AtMs and to improve therapeutic effectiveness in patients with lupus.


Assuntos
Subpopulações de Linfócitos B/imunologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Nefrite Lúpica/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Adulto , Subpopulações de Linfócitos B/metabolismo , Biópsia por Agulha , Diferenciação Celular/genética , Estudos de Coortes , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Citometria de Fluxo/métodos , Humanos , Imuno-Histoquímica , Lúpus Eritematoso Sistêmico/patologia , Nefrite Lúpica/patologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Pessoa de Meia-Idade , Prognóstico , Sensibilidade e Especificidade , Transdução de Sinais/genética , Regulação para Cima
12.
Mol Cell Biochem ; 445(1-2): 79-88, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29256115

RESUMO

Oxidative stress is implicated in the pathogenesis of a plethora of cardiovascular diseases including interstitial fibrosis, contractile dysfunction, ischemia-reperfusion injury, and cardiac remodeling. However, antioxidant therapies targeting oxidative stress in the progression of those diseases have largely been unsuccessful. The current study evaluated the effects of a NADPH oxidase inhibitor, apocynin (Apo), on the production of reactive oxygen species and the development of pathological cardiac hypertrophy under sustained ß-adrenergic stimulation in male Wistar rats. As evident from the HW/BW ratio, HW/TL ratio, echocardiography, and histopathology, hypertrophic responses induced by isoproterenol (Iso; 5 mg/Kg body weight, subcutaneous) were blocked by Apo (10 mg/Kg body weight, intraperitoneal). Iso treatment increased the transcript levels of cybb and p22-phox, the two subunits of Nox. Iso treatment also caused a decrease in reduced glutathione level that was restored by Apo. Increase in mRNA levels of a number of markers of hypertrophy, viz., ANP, BNP, ß-MHC, and ACTA-1 by Iso was either partially or completely prevented by Apo. Activation of key signaling kinases such as PKA, Erk, and Akt by Iso was also prevented by Apo treatment. Our study thus provided hemodynamic, biochemical, and molecular evidences supporting the therapeutic value of Apo in ameliorating adrenergic stress-induced cardiac hypertrophy.


Assuntos
Acetofenonas/farmacologia , Agonistas Adrenérgicos beta/toxicidade , Cardiomegalia/induzido quimicamente , Cardiomegalia/prevenção & controle , Isoproterenol/toxicidade , Animais , Biomarcadores/metabolismo , Peso Corporal , Cardiomegalia/diagnóstico por imagem , Ecocardiografia , Ativação Enzimática , Glutationa/metabolismo , Coração , Masculino , NADPH Oxidase 2/genética , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , Tamanho do Órgão , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases/metabolismo , RNA Mensageiro/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Regulação para Cima/efeitos dos fármacos
13.
Mol Cell Biochem ; 436(1-2): 167-178, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28593564

RESUMO

In recent years, NADPH oxidases (Noxes) have emerged as an important player in cardiovascular pathophysiology. Despite the growing evidences on the role of specific Nox isoforms, mechanisms of their activation, targets of reactive oxygen species (ROS) generated, and their downstream effects are poorly understood as yet. In this study, we treated H9c2 cardiac myoblasts with norepinephrine (NE, 2 µM), inducing ROS generation that was inhibited by Nox2-specific peptide inhibitor gp91ds-tat. Organelle-specific hydrogen peroxide-sensitive probe HyPer showed that the site of ROS generation is primarily in the cytosol, to some extent in the endoplasmic reticulum (ER) but not the mitochondria. Modulation of mRNAs of marker genes of cardiac hypertrophy i.e. induction in ANP and ß-MHC, and reduction in α-MHC by NE treatment was prevented by specific inhibition of Nox2 by gp91ds-tat. Induction of ANP and ß-MHC at the protein level were also attenuated by the inhibition of Nox2. Induction of c-Jun and FosB, the two members of the transcription factor family AP-1, were also blocked by the inhibition of Nox2 by gp91ds-tat. Induction of promoter-reporter constructs harboring multiple AP-1 elements and the upstream of FosB and ANP genes by NE were also blocked by the inhibition of Nox2 by gp91ds-tat and a dominant negative mutant of p22phox, a constituent of Nox2 that prevents its activation. This study for the first time establishes the significant role of Nox2 in mediating the NE-induced pathological adrenergic signaling in cardiac myoblasts.


Assuntos
Cardiomegalia/metabolismo , Mioblastos Cardíacos/metabolismo , NADPH Oxidase 2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Adrenérgicos/metabolismo , Transdução de Sinais , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Linhagem Celular , Camundongos , Mioblastos Cardíacos/patologia , NADPH Oxidase 2/genética , Receptores Adrenérgicos/genética
14.
Biochem Biophys Res Commun ; 463(4): 524-31, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26022125

RESUMO

SG2NA in association with striatin and zinedin forms a striatin family of WD-40 repeat proteins. This family of proteins functions as scaffold in different signal transduction pathways. They also act as a regulatory subunit of protein phosphatase 2A. We have shown that SG2NA which evolved first in the metazoan evolution among the striatin family members expresses different isoforms generated out of alternative splicing. We have also shown that SG2NA protects cells from oxidative stress by recruiting DJ-1 and Akt to mitochondria and membrane in the post-mitotic neuronal cells. DJ-1 is both cancer and Parkinson's disease related protein. In the present study we have shown that SG2NA protects DJ-1 from proteasomal degradation in cancer cells. Hence, downregulation of SG2NA reduces DJ-1/Akt colocalization in cancer cells resulting in the reduction of anchorage dependent and independent growth. Thus SG2NA enhances cancer cell survival. Reactive oxygen species enhances SG2NA, DJ-1 and Akt trimerization. Removal of the reactive oxygen species by N-acetyl-cysteine thus reduces cancer cell growth.


Assuntos
Autoantígenos/fisiologia , Proteínas de Ligação a Calmodulina/fisiologia , Sobrevivência Celular/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Oncogênicas/metabolismo , Peroxirredoxinas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Ativação Enzimática , Humanos , Camundongos , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/patologia , Proteína Desglicase DJ-1 , Espécies Reativas de Oxigênio/metabolismo
15.
Biochem J ; 460(2): 223-35, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24621232

RESUMO

The QDR (quinidine drug resistance) family of genes encodes transporters belonging to the MFS (major facilitator superfamily) of proteins. We show that QDR transporters, which are localized to the plasma membrane, do not play a role in drug transport. Hence, null mutants of QDR1, QDR2 and QDR3 display no alterations in susceptibility to azoles, polyenes, echinocandins, polyamines or quinolines, or to cell wall inhibitors and many other stresses. However, the deletion of QDR genes, individually or collectively, led to defects in biofilm architecture and thickness. Interestingly, QDR-lacking strains also displayed attenuated virulence, but the strongest effect was observed with qdr2∆, qdr3∆ and in qdr1/2/3∆ strains. Notably, the attenuated virulence and biofilm defects could be reversed upon reintegration of QDR genes. Transcripts profiling confirmed differential expression of many biofilm and virulence-related genes in the deletion strains as compared with wild-type Candida albicans cells. Furthermore, lipidomic analysis of QDR-deletion mutants suggests massive remodelling of lipids, which may affect cell signalling, leading to the defect in biofilm development and attenuation of virulence. In summary, the results of the present study show that QDR paralogues encoding MFS antiporters do not display conserved functional linkage as drug transporters and perform functions that significantly affect the virulence of C. albicans.


Assuntos
Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Virulência/genética , Animais , Biofilmes/crescimento & desenvolvimento , Candida albicans/patogenicidade , Candidíase/genética , Genes Fúngicos/fisiologia , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Camundongos , Percepção de Quorum/fisiologia
16.
Subcell Biochem ; 61: 527-42, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23150266

RESUMO

Since the Central dogma of Molecular Biology was proposed about 40 years ago; our understanding of the intricacies of gene regulation has undergone tectonic shifts almost every decade. It is now widely accepted that the complexity of an organism is not directed by the sheer number of genes it carries but how they are decoded by a myriad of regulatory modules. Over the years, it has emerged that the organizations chromatins and its remodeling; splicing and polyadenylation of pre-mRNAs, stability and localization of mRNAs and modulation of their expression by non-coding and miRNAs play pivotal roles in metazoan gene expression. Nevertheless, in spite of tremendous progress in our understanding of all these mechanisms of gene regulation, the way these events are coordinated leading towards a highly defined proteome of a given cell type remains enigmatic. In that context, the structures of many metazoan genes cannot fully explain their pattern of expression in different tissues, especially during embryonic development and progression of various diseases. Further, numerous studies done during the past quarter of a century suggested that the heritable states of transcriptional activation or repression of a gene can be influenced by the covalent modifications of constituent bases and associated histones; its chromosomal context and long-range interactions between various chromosomal elements (Holliday 1987; Turner 1998; Lyon 1993). However, molecular dissection of these phenomena is largely unknown and is an exciting topic of research under the sub-discipline epigenetics (Gasser et al. 1998).


Assuntos
Epigênese Genética , Predisposição Genética para Doença , Estresse Oxidativo/genética , Animais , Montagem e Desmontagem da Cromatina , Metilação de DNA , Histonas/metabolismo , Humanos , Oxirredução , Fenótipo , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
17.
Biochim Biophys Acta ; 1808(1): 461-5, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20851100

RESUMO

Cardiac myocytes endogenously express α and ß adrenergic receptors, prototypes of the G-protein coupled receptor superfamily. Depending upon the dose of norepinephrine (agonist) exposure, hypertrophy and apoptosis are initiated by differential induction of two discrete constituents of the transcription factor AP-1, i.e., FosB and Fra-1. We explored differential adrenergic signaling as a paradigm for understanding how cholesterol dictates cells to choose hypertrophy or apoptosis. For this, we used fosB and fra-1 promoter-reporter constructs for monitoring adrenergic signaling. We show that cholesterol depletion enhances norepinephrine-mediated signaling in cardiac myocytes. Importantly, this increased signaling is reduced to original level upon cholesterol replenishment. We used specific ligands for α and ß adrenergic receptors and show that the enhanced signaling upon cholesterol depletion is a combined effect of both α and ß adrenergic receptors. These results constitute the first report demonstrating the effect of cholesterol on adrenergic signaling using a direct end-point gene expression.


Assuntos
Colesterol/metabolismo , Miócitos Cardíacos/citologia , Receptores Adrenérgicos/metabolismo , Animais , Apoptose , Células Cultivadas , Colesterol/química , Ligantes , Luciferases/metabolismo , Modelos Genéticos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-fos/genética , Ratos , Transdução de Sinais , Fatores de Tempo
18.
Indian J Med Res ; 136(1): 54-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22885264

RESUMO

BACKGROUND & OBJECTIVES: Interferon alpha 2b (IFNα2b) has been reported to regulate several immune functions efficiently to enhance the cytotoxic activity of NK and T cells towards various forms of tumours. The objective of the present study was to evaluate the efficacy of IFNα2b in overcoming disease induced and/or treatment associated imunosuppression of tongue squamous cell carcinoma (TSCC) patients undergoing chemotherapy for better clinical outcome. METHODS: Seven TSCC patients under cisplatin + 5-fluorouracil chemotherapy in combination with IFNα2b were assessed for various immunohaematological parameters before treatment, after chemotherapy and after IFNα2b therapy. RESULTS: Deterioration of the haematological and immune responses was detected in immunosuppressed TSCC patients after chemotherapy. IFNα2b treatment led to a recovery in these parameters in most of the patients. Greater number of T/NK cells and enhanced secretion of type 1 cytokines were also noted. Haematological complications were reduced after completion of the therapy. Immune- and haematostimulation were also observed in patients with partial response. No positive clinical response was detected in one patient. INTERPRETATION & CONCLUSIONS: IFNα2b appears to be an effective immunostimulator having clinical impact to combat the immunosuppression in TSCC patients. Successful immunostimulation by IFNα2b may help TSCC patients in clinical improvement. The findings of this preliminary study need to be confirmed on a large number of patients with TSCC.


Assuntos
Carcinoma de Células Escamosas/imunologia , Cisplatino/uso terapêutico , Fluoruracila/uso terapêutico , Interferon-alfa/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Neoplasias da Língua/imunologia , Carcinoma de Células Escamosas/tratamento farmacológico , Cisplatino/efeitos adversos , Citometria de Fluxo , Fluoruracila/efeitos adversos , Humanos , Tolerância Imunológica/efeitos dos fármacos , Interferon alfa-2 , Células Matadoras Naturais/imunologia , Proteínas Recombinantes/farmacologia , Linfócitos T/imunologia , Neoplasias da Língua/tratamento farmacológico
19.
Eur J Pharmacol ; 908: 174350, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34265295

RESUMO

In cardiac muscle cells adrenergic agonists stimulate the generation of reactive oxygen species, followed by redox signaling. We postulated that the antagonists would attenuate such reactive oxygen species generation by the agonists. H9c2 cardiac myoblasts, neonatal rat cardiac myocytes, and HEK293 cells expressing ß1/ß2 adrenoceptors were stimulated with several agonists and antagonists. All the agonists and antagonists independently generated reactive oxygen species; but its generation was minimum whenever an agonists was added together with an antagonist. We monitored the Ca++ signaling in the treated cells and obtained similar results. In all treatment sets, superoxide and H2O2 were generated in the mitochondria and the cytosol respectively. NOX2 inhibitor gp91ds-tat blocked reactive oxygen species generation by both the agonists and the antagonists. The level of p47phox subunit of NOX2 rapidly increased upon treatment, and it translocated to the plasma membrane, confirming NOX2 activation. Inhibitor studies showed that the activation of NOX2 involves ERK, PI3K, and tyrosine kinases. Recombinant promoter-reporter assays showed that reactive oxygen species generated by both the agonists and antagonists modulated downstream gene expression. Mice injected with the ß-adrenergic agonist isoproterenol and fed with the antagonist metoprolol showed a robust induction of p47phox in the heart. We conclude that both the agonism and antagonism of adrenoceptors initiate redox signaling but when added together, they mutually counteract each other's effects. Our study thus highlights the importance of reactive oxygen species in adrenoceptor agonism and antagonism with relevance to the therapeutic use of the ß blockers.


Assuntos
Espécies Reativas de Oxigênio , Agonistas Adrenérgicos , Animais , Células HEK293 , Humanos , Miócitos Cardíacos , Ratos
20.
FEMS Yeast Res ; 10(5): 587-96, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20491944

RESUMO

This study shows that the morphogenic regulator EFG1 level affects the drug susceptibilities of Candida albicans when grown on solid growth media. The Deltaefg1 mutant showed sensitivity particularly to those drugs that target ergosterol or its metabolism. Efg1p disruption showed a gene-dosage effect on drug susceptibilities and resulted in enhanced susceptibility to drugs in the homozygous mutant as compared with the wild type, heterozygous and revertant strains. The enhanced sensitivity to drugs was independent of the status of ATP-binding cassette and MFS multidrug efflux pumps of C. albicans. The Deltaefg1 mutant displayed increased membrane fluidity that coincided with the downregulation of ERG11 and upregulation of OLE1 and ERG3, leading to enhanced passive diffusion of drugs. Interestingly, Deltaefg1 mutant cells displayed enhanced levels of endogenous ROS levels. Notably, the higher levels of ROS in the Deltaefg1 mutant could be reversed by the addition of antioxidants. However, the restoration of ROS levels did not reverse the drug sensitivities of the Deltaefg1 mutant. Taken together, we, for the first time, establish a new role to EFG1 in affecting the drug susceptibilities of C. albicans cells, independent of ROS and known drug efflux mechanisms.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Membrana Celular/fisiologia , Proteínas de Ligação a DNA/genética , Ergosterol/metabolismo , Proteínas Fúngicas/genética , Deleção de Genes , Perfilação da Expressão Gênica , Fluidez de Membrana , Testes de Sensibilidade Microbiana , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA