Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 38(2): 344-352, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29146750

RESUMO

OBJECTIVE: TRPM7 (transient receptor potential cation channel, subfamily M, member 7) is a ubiquitously expressed bifunctional protein comprising a transient receptor potential channel segment linked to a cytosolic α-type serine/threonine protein kinase domain. TRPM7 forms a constitutively active Mg2+ and Ca2+ permeable channel, which regulates diverse cellular processes in both healthy and diseased conditions, but the physiological role of TRPM7 kinase remains largely unknown. APPROACH AND RESULTS: Here we show that point mutation in TRPM7 kinase domain deleting the kinase activity in mice (Trpm7R/R ) causes a marked signaling defect in platelets. Trpm7R/R platelets showed an impaired PIP2 (phosphatidylinositol-4,5-bisphosphate) metabolism and consequently reduced Ca2+ mobilization in response to stimulation of the major platelet receptors GPVI (glycoprotein VI), CLEC-2 (C-type lectin-like receptor), and PAR (protease-activated receptor). Altered phosphorylation of Syk (spleen tyrosine kinase) and phospholipase C γ2 and ß3 accounted for these global platelet activation defects. In addition, direct activation of STIM1 (stromal interaction molecule 1) with thapsigargin revealed a defective store-operated Ca2+ entry mechanism in the mutant platelets. These defects translated into an impaired platelet aggregate formation under flow and protection of the mice from arterial thrombosis and ischemic stroke in vivo. CONCLUSIONS: Our results identify TRPM7 kinase as a key modulator of phospholipase C signaling and store-operated Ca2+ entry in platelets. The protection of Trpm7R/R mice from acute ischemic disease without developing intracranial hemorrhage indicates that TRPM7 kinase might be a promising antithrombotic target.


Assuntos
Arteriopatias Oclusivas/sangue , Plaquetas/metabolismo , Sinalização do Cálcio , Cálcio/sangue , Infarto da Artéria Cerebral Média/sangue , Canais de Cátion TRPM/sangue , Trombose/sangue , Animais , Arteriopatias Oclusivas/genética , Arteriopatias Oclusivas/patologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Lectinas Tipo C/sangue , Camundongos Mutantes , Fosfatidilinositol 4,5-Difosfato/sangue , Fosfolipase C beta/sangue , Fosfolipase C gama/sangue , Fosforilação , Glicoproteínas da Membrana de Plaquetas/metabolismo , Mutação Puntual , Receptores Ativados por Proteinase/sangue , Molécula 1 de Interação Estromal/sangue , Sinaptofisina/sangue , Canais de Cátion TRPM/deficiência , Canais de Cátion TRPM/genética , Trombose/genética , Trombose/patologia
2.
PLoS One ; 11(1): e0147664, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26800051

RESUMO

BACKGROUND: Serotonin (5-hydroxytryptamin, 5-HT) is an indolamine platelet agonist, biochemically derived from tryptophan. 5-HT is secreted from the enterochromaffin cells into the gastrointestinal tract and blood. Blood 5-HT has been proposed to regulate hemostasis by acting as a vasoconstrictor and by triggering platelet signaling through 5-HT receptor 2A (5HTR2A). Although platelets do not synthetize 5-HT, they take 5-HT up from the blood and store it in their dense granules which are secreted upon platelet activation. OBJECTIVE: To identify the molecular composite of the 5-HT uptake system in platelets and elucidate the role of platelet released 5-HT in thrombosis and ischemic stroke. METHODS: 5-HT transporter knockout mice (5Htt-/-) were analyzed in different in vitro and in vivo assays and in a model of ischemic stroke. RESULTS: In 5Htt-/- platelets, 5-HT uptake from the blood was completely abolished and agonist-induced Ca2+ influx through store operated Ca2+ entry (SOCE), integrin activation, degranulation and aggregation responses to glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2) were reduced. These observed in vitro defects in 5Htt-/- platelets could be normalized by the addition of exogenous 5-HT. Moreover, reduced 5-HT levels in the plasma, an increased bleeding time and the formation of unstable thrombi were observed ex vivo under flow and in vivo in the abdominal aorta and carotid artery of 5Htt-/- mice. Surprisingly, in the transient middle cerebral artery occlusion (tMCAO) model of ischemic stroke 5Htt-/- mice showed nearly normal infarct volume and the neurological outcome was comparable to control mice. CONCLUSION: Although secreted platelet 5-HT does not appear to play a crucial role in the development of reperfusion injury after stroke, it is essential to amplify the second phase of platelet activation through SOCE and plays an important role in thrombus stabilization.


Assuntos
Plaquetas/fisiologia , Cálcio/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/fisiologia , Serotonina/metabolismo , Transdução de Sinais/fisiologia , Animais , Plaquetas/metabolismo , Modelos Animais de Doenças , Fibrinogênio/fisiologia , Hemostasia/fisiologia , Ácido Hidroxi-Indolacético/urina , Melatonina/sangue , Camundongos , Camundongos Knockout , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/deficiência , Acidente Vascular Cerebral/fisiopatologia , Trombose/fisiopatologia
3.
Nat Commun ; 7: 11097, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27020697

RESUMO

Mg(2+) plays a vital role in platelet function, but despite implications for life-threatening conditions such as stroke or myocardial infarction, the mechanisms controlling [Mg(2+)]i in megakaryocytes (MKs) and platelets are largely unknown. Transient receptor potential melastatin-like 7 channel (TRPM7) is a ubiquitous, constitutively active cation channel with a cytosolic α-kinase domain that is critical for embryonic development and cell survival. Here we report that impaired channel function of TRPM7 in MKs causes macrothrombocytopenia in mice (Trpm7(fl/fl-Pf4Cre)) and likely in several members of a human pedigree that, in addition, suffer from atrial fibrillation. The defect in platelet biogenesis is mainly caused by cytoskeletal alterations resulting in impaired proplatelet formation by Trpm7(fl/fl-Pf4Cre) MKs, which is rescued by Mg(2+) supplementation or chemical inhibition of non-muscle myosin IIA heavy chain activity. Collectively, our findings reveal that TRPM7 dysfunction may cause macrothrombocytopenia in humans and mice.


Assuntos
Citoesqueleto/metabolismo , Homeostase , Magnésio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Cátion TRPM/metabolismo , Trombopoese , Animais , Plaquetas/metabolismo , Humanos , Megacariócitos/metabolismo , Camundongos , Proteínas Mutantes/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Canais de Cátion TRPM/deficiência , Trombocitopenia/metabolismo , Trombocitopenia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA