RESUMO
DNAJ/HSP40 co-chaperones are integral to the chaperone network, bind client proteins and recruit them to HSP70 for folding. We performed exome sequencing on patients with a presumed hereditary muscle disease and no genetic diagnosis. This identified four individuals from three unrelated families carrying an unreported homozygous stop gain (c.856A > T; p.Lys286Ter), or homozygous missense variants (c.74G > A; p.Arg25Gln and c.785 T > C; p.Leu262Ser) in DNAJB4. Affected patients presented with axial rigidity and early respiratory failure requiring ventilator support between the 1st and 4th decade of life. Selective involvement of the semitendinosus and biceps femoris muscles was seen on MRI scans of the thigh. On biopsy, muscle was myopathic with angular fibers, protein inclusions and occasional rimmed vacuoles. DNAJB4 normally localizes to the Z-disc and was absent from muscle and fibroblasts of affected patients supporting a loss of function. Functional studies confirmed that the p.Lys286Ter and p.Leu262Ser mutant proteins are rapidly degraded in cells. In contrast, the p.Arg25Gln mutant protein is stable but failed to complement for DNAJB function in yeast, disaggregate client proteins or protect from heat shock-induced cell death consistent with its loss of function. DNAJB4 knockout mice had muscle weakness and fiber atrophy with prominent diaphragm involvement and kyphosis. DNAJB4 knockout muscle and myotubes had myofibrillar disorganization and accumulated Z-disc proteins and protein chaperones. These data demonstrate a novel chaperonopathy associated with DNAJB4 causing a myopathy with early respiratory failure. DNAJB4 loss of function variants may lead to the accumulation of DNAJB4 client proteins resulting in muscle dysfunction and degeneration.
Assuntos
Doenças Musculares , Insuficiência Respiratória , Animais , Camundongos , Mutação/genética , Doenças Musculares/diagnóstico por imagem , Doenças Musculares/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação de Sentido Incorreto , Insuficiência Respiratória/genética , Insuficiência Respiratória/complicações , Insuficiência Respiratória/patologia , Músculo Esquelético/patologiaRESUMO
Rhabdomyolysis is the acute breakdown of skeletal myofibres in response to an initiating factor, most commonly toxins and over exertion. A variety of genetic disorders predispose to rhabdomyolysis through different pathogenic mechanisms, particularly in patients with recurrent episodes. However, most cases remain without a genetic diagnosis. Here we present six patients who presented with severe and recurrent rhabdomyolysis, usually with onset in the teenage years; other features included a history of myalgia and muscle cramps. We identified 10 bi-allelic loss-of-function variants in the gene encoding obscurin (OBSCN) predisposing individuals to recurrent rhabdomyolysis. We show reduced expression of OBSCN and loss of obscurin protein in patient muscle. Obscurin is proposed to be involved in sarcoplasmic reticulum function and Ca2+ handling. Patient cultured myoblasts appear more susceptible to starvation as evidenced by a greater decreased in sarcoplasmic reticulum Ca2+ content compared to control myoblasts. This likely reflects a lower efficiency when pumping Ca2+ back into the sarcoplasmic reticulum and/or a decrease in Ca2+ sarcoplasmic reticulum storage ability when metabolism is diminished. OSBCN variants have previously been associated with cardiomyopathies. None of the patients presented with a cardiomyopathy and cardiac examinations were normal in all cases in which cardiac function was assessed. There was also no history of cardiomyopathy in first degree relatives, in particular in any of the carrier parents. This cohort is relatively young, thus follow-up studies and the identification of additional cases with bi-allelic null OBSCN variants will further delineate OBSCN-related disease and the clinical course of disease.
Assuntos
Cálcio , Rabdomiólise , Adolescente , Humanos , Rabdomiólise/genética , Rabdomiólise/diagnóstico , Rabdomiólise/patologia , Mialgia/genética , Retículo Sarcoplasmático/metabolismo , Perda de Heterozigosidade , Proteínas Serina-Treonina Quinases , Fatores de Troca de Nucleotídeo Guanina Rho/genéticaRESUMO
McArdle disease is a disorder of carbohydrate metabolism that causes painful skeletal muscle cramps and skeletal muscle damage leading to transient myoglobinuria and increased risk of kidney failure. McArdle disease is caused by recessive mutations in the muscle glycogen phosphorylase (PYGM) gene leading to absence of PYGM enzyme in skeletal muscle and preventing access to energy from muscle glycogen stores. There is currently no cure for McArdle disease. Using a preclinical animal model, we aimed to identify a clinically translatable and relevant therapy for McArdle disease. We evaluated the safety and efficacy of recombinant adeno-associated virus serotype 8 (rAAV8) to treat a murine model of McArdle disease via delivery of a functional copy of the disease-causing gene, Pygm. Intraperitoneal injection of rAAV8-Pygm at post-natal day 1-3 resulted in Pygm expression at 8 weeks of age, accompanied by improved skeletal muscle architecture, reduced accumulation of glycogen and restoration of voluntary running wheel activity to wild-type levels. We did not observe any adverse reaction to the treatment at 8 weeks post-injection. Thus, we have investigated a highly promising gene therapy for McArdle disease with a clear path to the ovine large animal model endemic to Western Australia and subsequently to patients.
Assuntos
Glicogênio Fosforilase Muscular/metabolismo , Doença de Depósito de Glicogênio Tipo V/metabolismo , Glicogênio/metabolismo , Músculo Esquelético/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Glicogênio Fosforilase Muscular/genética , Doença de Depósito de Glicogênio Tipo V/genética , Inflamação/genética , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
PURPOSE: Variants in genes encoding sarcomeric proteins are the most common cause of inherited cardiomyopathies. However, the underlying genetic cause remains unknown in many cases. We used exome sequencing to reveal the genetic etiology in patients with recessive familial cardiomyopathy. METHODS: Exome sequencing was carried out in three consanguineous families. Functional assessment of the variants was performed. RESULTS: Affected individuals presented with hypertrophic or dilated cardiomyopathy of variable severity from infantile- to early adulthood-onset and sudden cardiac death. We identified a homozygous missense substitution (c.170C>A, p.[Ala57Asp]), a homozygous translation stop codon variant (c.106G>T, p.[Glu36Ter]), and a presumable homozygous essential splice acceptor variant (c.482-1G>A, predicted to result in skipping of exon 5). Morpholino knockdown of the MYL3 orthologue in zebrafish, cmlc1, resulted in compromised cardiac function, which could not be rescued by reintroduction of MYL3 carrying either the nonsense c.106G>T or the missense c.170C>A variants. Minigene assay of the c.482-1G>A variant indicated a splicing defect likely resulting in disruption of the EF-hand Ca2+ binding domains. CONCLUSIONS: Our data demonstrate that homozygous MYL3 loss-of-function variants can cause of recessive cardiomyopathy and occurrence of sudden cardiac death, most likely due to impaired or loss of myosin essential light chain function.
Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Cadeias Leves de Miosina/genética , Animais , Cardiomiopatias/genética , Cardiomiopatia Dilatada/genética , Consanguinidade , Morte Súbita Cardíaca/etiologia , Humanos , Linhagem , Peixe-Zebra/genéticaRESUMO
BACKGROUND: UBA5 is the activating enzyme of UFM1 in the ufmylation post-translational modification system. Different neurological phenotypes have been associated with UBA5 pathogenic variants including epilepsy, intellectual disability, movement disorders and ataxia. METHODS AND RESULTS: We describe a large multigenerational consanguineous family presenting with a severe congenital neuropathy causing early death in infancy. Whole exome sequencing and linkage analysis identified a novel homozygous UBA5 NM_024818.3 c.31C>T (p.Arg11Trp) mutation. Protein expression assays in mouse tissue showed similar levels of UBA5 in peripheral nerves to the central nervous system. CRISPR-Cas9 edited HEK (human embrionic kidney) cells homozygous for the UBA5 p.Arg11Trp mutation showed reduced levels of UBA5 protein compared with the wild-type. The mutant p.Arg11Trp UBA5 protein shows reduced ability to activate UFM1. CONCLUSION: This report expands the phenotypical spectrum of UBA5 mutations to include fatal peripheral neuropathy.
Assuntos
Sistemas CRISPR-Cas/genética , Deficiência Intelectual/genética , Malformações do Sistema Nervoso/genética , Proteínas/genética , Enzimas Ativadoras de Ubiquitina/genética , Ataxia/genética , Ataxia/patologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Consanguinidade , Epilepsia/genética , Epilepsia/patologia , Feminino , Regulação da Expressão Gênica/genética , Ligação Genética , Células HEK293 , Homozigoto , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/patologia , Mutação/genética , Malformações do Sistema Nervoso/patologia , Linhagem , Nervos Periféricos/metabolismo , Nervos Periféricos/patologiaRESUMO
Congenital myopathies are typically characterised by early onset hypotonia, weakness and hallmark features on biopsy. Despite the rapid pace of gene discovery, â¼50% of patients with a congenital myopathy remain without a genetic diagnosis following screening of known disease genes. We performed exome sequencing on two consanguineous probands diagnosed with a congenital myopathy and muscle biopsy showing selective atrophy/hypotrophy or absence of type II myofibres. We identified variants in the gene (MYL1) encoding the skeletal muscle fast-twitch specific myosin essential light chain (ELC) in both probands. A homozygous essential splice acceptor variant (c.479-2A > G, predicted to result in skipping of exon 5 was identified in Proband 1, and a homozygous missense substitution (c.488T>G, p.(Met163Arg)) was identified in Proband 2. Protein modelling of the p.(Met163Arg) substitution predicted it might impede intermolecular interactions that facilitate binding to the IQ domain of myosin heavy chain, thus likely impacting on the structure and functioning of the myosin motor. MYL1 was markedly reduced in skeletal muscle from both probands, suggesting that the missense substitution likely results in an unstable protein. Knock down of myl1 in zebrafish resulted in abnormal morphology, disrupted muscle structure and impaired touch-evoked escape responses, thus confirming that skeletal muscle fast-twitch specific myosin ELC is critical for myofibre development and function. Our data implicate MYL1 as a crucial protein for adequate skeletal muscle function and that MYL1 deficiency is associated with severe congenital myopathy.
Assuntos
Músculo Esquelético/fisiopatologia , Cadeias Leves de Miosina/genética , Miotonia Congênita/genética , Alelos , Animais , Consanguinidade , Modelos Animais de Doenças , Exoma/genética , Homozigoto , Humanos , Masculino , Músculo Esquelético/metabolismo , Mutação , Cadeias Pesadas de Miosina/genética , Miotonia Congênita/fisiopatologia , Linhagem , Peixe-Zebra/genéticaRESUMO
See Ginevrino and Valente (doi:10.1093/brain/awx260) for a scientific commentary on this article. Autosomal dominant torsion dystonia-1 is a disease with incomplete penetrance most often caused by an in-frame GAG deletion (p.Glu303del) in the endoplasmic reticulum luminal protein torsinA encoded by TOR1A. We report an association of the homozygous dominant disease-causing TOR1A p.Glu303del mutation, and a novel homozygous missense variant (p.Gly318Ser) with a severe arthrogryposis phenotype with developmental delay, strabismus and tremor in three unrelated Iranian families. All parents who were carriers of the TOR1A variant showed no evidence of neurological symptoms or signs, indicating decreased penetrance similar to families with autosomal dominant torsion dystonia-1. The results from cell assays demonstrate that the p.Gly318Ser substitution causes a redistribution of torsinA from the endoplasmic reticulum to the nuclear envelope, similar to the hallmark of the p.Glu303del mutation. Our study highlights that TOR1A mutations should be considered in patients with severe arthrogryposis and further expands the phenotypic spectrum associated with TOR1A mutations.
Assuntos
Artrogripose/genética , Deficiências do Desenvolvimento/genética , Variação Genética/genética , Chaperonas Moleculares/genética , Estrabismo/genética , Tremor/genética , Sequência de Aminoácidos , Artrogripose/complicações , Artrogripose/diagnóstico por imagem , Pré-Escolar , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/diagnóstico por imagem , Feminino , Células HEK293 , Humanos , Lactente , Masculino , Linhagem , Índice de Gravidade de Doença , Estrabismo/complicações , Estrabismo/diagnóstico por imagem , Tremor/complicações , Tremor/diagnóstico por imagemRESUMO
Despite widespread exposure to potentially pathogenic mycobacteria present in the soil and in domestic water supplies, it is not clear why only a small proportion of individuals contract pulmonary nontuberculous mycobacterial (NTM) infections. Here, we explore the impact of polymorphisms within three genes: P2X ligand gated ion channel 7 (P2X7R), P2X ligand gated ion channel 4 (P2X4R) and calcium/calmodulin-dependent protein kinase kinase 2 beta (CAMKK2) on susceptibility. Thirty single nucleotide polymorphisms (SNPs) were genotyped in NTM patients (n = 124) and healthy controls (n = 229). Weak associations were found between individual alleles in P2X7R and disease but were not significant in multivariate analyses adjusted to account for gender. Haplotypes spanning the three genes were derived using the fastPHASE algorithm. This yielded 27 haplotypes with frequencies >1% and accounting for 63.3% of the combined cohort. In univariate analyses, seven of these haplotypes displayed associations with NTM disease above our preliminary cut-off (p ≤ 0.20). When these were carried forward in a logistic regression model, gender and one haplotype (SH95) were independently associated with the disease (model p < 0.0001; R 2 = 0.05). Examination of individual alleles within these haplotypes implicated P2X7R and CAMKK2 in pathways affecting pulmonary NTM disease.
Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Pneumopatias/genética , Infecções por Mycobacterium não Tuberculosas/genética , Mycobacterium , Polimorfismo de Nucleotídeo Único , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X7/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Haplótipos , Humanos , Pneumopatias/epidemiologia , Pneumopatias/microbiologia , Masculino , Pessoa de Meia-Idade , Mycobacterium/patogenicidade , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Infecções por Mycobacterium não Tuberculosas/microbiologiaRESUMO
HIV-associated sensory neuropathy (HIV-SN) is the most common neurological condition associated with HIV. HIV-SN has characteristics of an inflammatory pathology caused by the virus itself and/or by antiretroviral treatment (ART). Here, we assess the impact of single-nucleotide polymorphisms (SNPs) in a cluster of three genes that affect inflammation and neuronal repair: P2X7R, P2X4R and CAMKK2. HIV-SN status was assessed using the Brief Peripheral Neuropathy Screening tool, with SN defined by bilateral symptoms and signs. Forty-five SNPs in P2X7R, P2X4R and CAMKK2 were genotyped using TaqMan fluorescent probes, in DNA samples from 153 HIV(+) black Southern African patients exposed to stavudine. Haplotypes were derived using the fastPHASE algorithm, and SNP genotypes and haplotypes associated with HIV-SN were identified. Optimal logistic regression models included demographics (age and height), with SNPs (model p < 0.0001; R (2) = 0.19) or haplotypes (model p < 0.0001; R (2) = 0.18, n = 137 excluding patients carrying CAMKK2 haplotypes perfectly associated with SN). Overall, CAMKK2 exhibited the strongest associations with HIV-SN, with two SNPs and six haplotypes predicting SN status in black Southern Africans. This gene warrants further study.
Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Infecções por HIV/diagnóstico , Haplótipos , Polimorfismo de Nucleotídeo Único , Polineuropatias/diagnóstico , Adulto , Fármacos Anti-HIV/uso terapêutico , População Negra , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Estudos de Coortes , Progressão da Doença , Feminino , Expressão Gênica , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Polineuropatias/complicações , Polineuropatias/tratamento farmacológico , Polineuropatias/genética , Prognóstico , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , África do Sul , Estavudina/uso terapêuticoRESUMO
BACKGROUND: CRISPR/Cas9 is an invaluable tool for studying cell biology and the development of molecular therapies. However, delivery of CRISPR/Cas9 components into some cell types remains a major hurdle. Primary human myoblasts are a valuable cell model for muscle studies, but are notoriously difficult to transfect. There are currently no commercial lipofection protocols tailored for primary myoblasts, and most generic guidelines simply recommend transfecting healthy cells at high confluency. This study aimed to maximize CRISPR/Cas9 transfection and editing in primary human myoblasts. METHODS: Since increased cell proliferation is associated with increased transfection efficiency, we investigated two factors known to influence myoblast proliferation: cell confluency, and a basement membrane matrix, Matrigel. CRISPR/Cas9 editing was performed by delivering Cas9 ribonucleoprotein complexes via lipofection into primary human myoblasts, cultured in wells with or without a Matrigel coating, at low (~ 40%) or high (~ 80%) confluency. RESULTS: Cells transfected at low confluency on Matrigel-coated wells had the highest levels of transfection, and were most effectively edited across three different target loci, achieving a maximum editing efficiency of 93.8%. On average, editing under these conditions was >4-fold higher compared to commercial recommendations (high confluency, uncoated wells). CONCLUSION: This study presents a simple, effective and economical method of maximizing CRISPR/Cas9-mediated gene editing in primary human myoblasts. This protocol could be a valuable tool for improving the genetic manipulation of cultured human skeletal muscle cells, and potentially be adapted for use in other cell types.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Colágeno , Combinação de Medicamentos , Humanos , Laminina , Mioblastos , Proteoglicanas , TransfecçãoRESUMO
The impact of high-throughput sequencing in genetic neuromuscular disorders cannot be overstated. The ability to rapidly and affordably sequence multiple genes simultaneously has enabled a second golden age of Mendelian disease gene discovery, with flow-on impacts for rapid genetic diagnosis, evidence-based treatment, tailored therapy development, carrier-screening, and prevention of disease recurrence in families. However, there are likely many more neuromuscular disease genes and mechanisms to be discovered. Many patients and families remain without a molecular diagnosis following targeted panel sequencing, clinical exome sequencing, or even genome sequencing. Here we review how massively parallel, or next-generation, sequencing has changed the field of genetic neuromuscular disorders, and anticipate future benefits of recent technological innovations such as RNA-seq implementation and detection of tandem repeat expansions from short-read sequencing.
Assuntos
Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/prevenção & controle , Sequenciamento de Nucleotídeos em Larga Escala , Doenças Neuromusculares/genética , Doenças Neuromusculares/prevenção & controle , Consanguinidade , Estudos de Associação Genética , Aconselhamento Genético , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/terapia , Humanos , Doenças Neuromusculares/diagnóstico , Doenças Neuromusculares/terapiaRESUMO
Ovine congenital progressive muscular dystrophy (OCPMD) was first described in Merino sheep flocks in Queensland and Western Australia in the 1960s and 1970s. The most prominent feature of the disease is a distinctive gait with stiffness of the hind limbs that can be seen as early as 3 weeks after birth. The disease is progressive. Histopathological examination had revealed dystrophic changes specifically in type I (slow) myofibres, while electron microscopy had demonstrated abundant nemaline bodies. Therefore, it was never certain whether the disease was a dystrophy or a congenital myopathy with dystrophic features. In this study, we performed whole genome sequencing of OCPMD sheep and identified a single base deletion at the splice donor site (+ 1) of intron 13 in the type I myofibre-specific TNNT1 gene (KT218690 c.614 + 1delG). All affected sheep were homozygous for this variant. Examination of TNNT1 splicing by RT-PCR showed intron retention and premature termination, which disrupts the highly conserved 14 amino acid C-terminus. The variant did not reduce TNNT1 protein levels or affect its localization but impaired its ability to modulate muscle contraction in response to Ca2+ levels. Identification of the causative variant in TNNT1 finally clarifies that the OCPMD sheep is in fact a large animal model of TNNT1 congenital myopathy. This model could now be used for testing molecular or gene therapies.
Assuntos
Miotonia Congênita/patologia , Miotonia Congênita/veterinária , Doenças dos Ovinos/genética , Doenças dos Ovinos/patologia , Troponina T/genética , Animais , Modelos Animais de Doenças , Músculo Esquelético/patologia , OvinosRESUMO
Nemaline myopathy (NM) caused by mutations in the gene encoding nebulin (NEB) accounts for at least 50% of all NM cases worldwide, representing a significant disease burden. Most NEB-NM patients have autosomal recessive disease due to a compound heterozygous genotype. Of the few murine models developed for NEB-NM, most are Neb knockout models rather than harbouring Neb mutations. Additionally, some models have a very severe phenotype that limits their application for evaluating disease progression and potential therapies. No existing murine models possess compound heterozygous Neb mutations that reflect the genotype and resulting phenotype present in most patients. We aimed to develop a murine model that more closely matched the underlying genetics of NEB-NM, which could assist elucidation of the pathogenetic mechanisms underlying the disease. Here, we have characterised a mouse strain with compound heterozygous Neb mutations; one missense (p.Tyr2303His), affecting a conserved actin-binding site and one nonsense mutation (p.Tyr935*), introducing a premature stop codon early in the protein. Our studies reveal that this compound heterozygous model, NebY2303H, Y935X, has striking skeletal muscle pathology including nemaline bodies. In vitro whole muscle and single myofibre physiology studies also demonstrate functional perturbations. However, no reduction in lifespan was noted. Therefore, NebY2303H,Y935X mice recapitulate human NEB-NM and are a much needed addition to the NEB-NM mouse model collection. The moderate phenotype also makes this an appropriate model for studying NEB-NM pathogenesis, and could potentially be suitable for testing therapeutic applications.
Assuntos
Códon sem Sentido , Proteínas Musculares/genética , Mutação de Sentido Incorreto , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/ultraestruturaRESUMO
OBJECTIVE: We report 3 siblings with the characteristic features of ataxia-telangiectasia-like disorder associated with a homozygous MRE11 synonymous variant causing nonsense-mediated mRNA decay (NMD) and MRE11A deficiency. METHODS: Clinical assessments, next-generation sequencing, transcript and immunohistochemistry analyses were performed. RESULTS: The patients presented with poor balance, developmental delay during the first year of age, and suffered from intellectual disability from early childhood. They showed oculomotor apraxia, slurred and explosive speech, limb and gait ataxia, exaggerated deep tendon reflex, dystonic posture, and mirror movement in their hands. They developed mild cognitive abilities. Brain MRI in the index case revealed cerebellar atrophy. Next-generation sequencing revealed a homozygous synonymous variant in MRE11 (c.657C>T, p.Asn219=) that we show affects splicing. A complete absence of MRE11 transcripts in the index case suggested NMD and immunohistochemistry confirmed the absence of a stable protein. CONCLUSIONS: Despite the critical role of MRE11A in double-strand break repair and its contribution to the Mre11/Rad50/Nbs1 complex, the absence of MRE11A is compatible with life.
RESUMO
OBJECTIVE: Our goal was to identify the gene(s) associated with an early-onset form of Parkinson disease (PD) and the molecular defects associated with this mutation. METHODS: We combined whole-exome sequencing and functional genomics to identify the genes associated with early-onset PD. We used fluorescence microscopy, cell, and mitochondrial biology measurements to identify the molecular defects resulting from the identified mutation. RESULTS: Here, we report an association of a homozygous variant in CHCHD2, encoding coiled-coil-helix-coiled-coil-helix domain containing protein 2, a mitochondrial protein of unknown function, with an early-onset form of PD in a 26-year-old Caucasian woman. The CHCHD2 mutation in PD patient fibroblasts causes fragmentation of the mitochondrial reticular morphology and results in reduced oxidative phosphorylation at complex I and complex IV. Although patient cells could maintain a proton motive force, reactive oxygen species production was increased, which correlated with an increased metabolic rate. CONCLUSIONS: Our findings implicate CHCHD2 in the pathogenesis of recessive early-onset PD, expanding the repertoire of mitochondrial proteins that play a direct role in this disease.
RESUMO
Although exposure to potentially pathogenic nontuberculous mycobacteria (NTM) via soil and domestic water supplies is common, pulmonary infection and disease are confined to a small proportion of older individuals. Previously, alleles of a polymorphism in IL10 (rs1800896) were associated with NTM disease and we demonstrated elevated production of IL-10 by blood leukocytes from patients with pulmonary NTM. Here seven additional polymorphisms in IL10 were investigated in a larger cohort of Caucasian controls and patients with pulmonary NTM disease. This demonstrated a significant association between pulmonary NTM disease and one polymorphism (rs1518111) in strong linkage disequilibrium with rs1800896.
Assuntos
Interleucina-10/genética , Infecções por Mycobacterium não Tuberculosas/genética , Micobactérias não Tuberculosas/fisiologia , Pneumonia/genética , População Branca , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Pneumonia/microbiologia , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Different genes encode the α-actin isoforms that are predominantly expressed in heart and skeletal muscle. Mutations in the skeletal muscle α-actin gene (ACTA1) cause muscle diseases that are mostly lethal in the early postnatal period. We previously demonstrated that the disease phenotype of ACTA1 mouse models could be rescued by transgenic over-expression of cardiac α-actin (ACTC1). ACTC1 is the predominant striated α-actin isoform in the heart but is also expressed in developing skeletal muscle. To develop a translatable therapy, we investigated the genetic regulation of Actc1 expression. Using strains from The Collaborative Cross (CC) genetic resource, we found that Actc1 varies in expression by up to 24-fold in skeletal muscle. We defined significant expression quantitative trait loci (eQTL) associated with early adult Actc1 expression in soleus and heart. eQTL in both heart and soleus mapped to the Actc1 locus and replicate an eQTL mapped for Actc1 in BXD heart and quadriceps. We built on this previous work by analysing genes within the eQTL peak regions to prioritise likely candidates for modifying Actc1 expression. Additionally we interrogated the CC founder haplotype contributions to enable prioritisation of genetic variants for functional analyses. Methylation around the Actc1 transcriptional start site in early adult skeletal muscle negatively correlated with Actc1 expression in a strain-dependent manner, while other marks of regulatory potential (histone modification and chromatin accessibility) were unaltered. This study provides novel insights into the complex genetic regulation of Actc1 expression in early adult skeletal muscles.