Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 39(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37522889

RESUMO

SUMMARY: In any population under selective pressure, a central challenge is to distinguish the genes that drive adaptation from others which, subject to population variation, harbor many neutral mutations de novo. We recently showed that such genes could be identified by supplementing information on mutational frequency with an evolutionary analysis of the likely functional impact of coding variants. This approach improved the discovery of driver genes in both lab-evolved and environmental Escherichia coli strains. To facilitate general adoption, we now developed ShinyBioHEAT, an R Shiny web-based application that enables identification of phenotype driving gene in two commonly used model bacteria, E.coli and Bacillus subtilis, with no specific computational skill requirements. ShinyBioHEAT not only supports transparent and interactive analysis of lab evolution data in E.coli and B.subtilis, but it also creates dynamic visualizations of mutational impact on protein structures, which add orthogonal checks on predicted drivers. AVAILABILITY AND IMPLEMENTATION: Code for ShinyBioHEAT is available at https://github.com/LichtargeLab/ShinyBioHEAT. The Shiny application is additionally hosted at http://bioheat.lichtargelab.org/.


Assuntos
Escherichia coli , Aplicativos Móveis , Escherichia coli/genética , Software , Mutação , Interpretação Estatística de Dados , Taxa de Mutação
2.
Bioinformatics ; 37(22): 4033-4040, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34043002

RESUMO

MOTIVATION: Since the first recognized case of COVID-19, more than 100 million people have been infected worldwide. Global efforts in drug and vaccine development to fight the disease have yielded vaccines and drug candidates to cure COVID-19. However, the spread of SARS-CoV-2 variants threatens the continued efficacy of these treatments. In order to address this, we interrogate the evolutionary history of the entire SARS-CoV-2 proteome to identify evolutionarily conserved functional sites that can inform the search for treatments with broader coverage across the coronavirus family. RESULTS: Combining coronavirus family sequence information with the mutations observed in the current COVID-19 outbreak, we systematically and comprehensively define evolutionarily stable sites that may provide useful drug and vaccine targets and which are less likely to be compromised by the emergence of new virus strains. Several experimentally validated effective drugs interact with these proposed target sites. In addition, the same evolutionary information can prioritize cross reactive antigens that are useful in directing multi-epitope vaccine strategies to illicit broadly neutralizing immune responses to the betacoronavirus family. Although the results are focused on SARS-CoV-2, these approaches stem from evolutionary principles that are agnostic to the organism or infective agent. AVAILABILITY AND IMPLEMENTATION: The results of this work are made interactively available at http://cov.lichtargelab.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
COVID-19 , Vacinas Virais , Humanos , SARS-CoV-2/genética , Proteoma , Vacinas contra COVID-19 , Vacinas Virais/genética
3.
Bioinformatics ; 36(6): 1881-1888, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31738408

RESUMO

MOTIVATION: In light of the massive growth of the scientific literature, text mining is increasingly used to extract biological pathways. Though multiple tools explore individual connections between genes, diseases and drugs, few extensively synthesize pathways for specific diseases and drugs. RESULTS: Through community detection of a literature network, we extracted 3444 functional gene groups that represented biological pathways for specific diseases and drugs. The network linked Medical Subject Headings (MeSH) terms of genes, diseases and drugs that co-occurred in publications. The resulting communities detected highly associated genes, diseases and drugs. These significantly matched current knowledge of biological pathways and predicted future ones in time-stamped experiments. Likewise, disease- and drug-specific communities also recapitulated known pathways for those given diseases and drugs. Moreover, diseases sharing communities had high comorbidity with each other and drugs sharing communities had many common side effects, consistent with related mechanisms. Indeed, the communities robustly recovered mutual targets for drugs [area under Receiver Operating Characteristic curve (AUROC)=0.75] and shared pathogenic genes for diseases (AUROC=0.82). These data show that literature communities inform not only just known biological processes but also suggest novel disease- and drug-specific mechanisms that may guide disease gene discovery and drug repurposing. AVAILABILITY AND IMPLEMENTATION: Application tools are available at http://meteor.lichtargelab.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Medical Subject Headings , Publicações , Mineração de Dados , Reposicionamento de Medicamentos
5.
Res Sq ; 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33106800

RESUMO

Since the first recognized case of COVID-19, more than 100 million people have been infected worldwide. Global efforts in drug and vaccine development to fight the disease have yielded vaccines and drug candidates to cure COVID-19. However, the spread of SARS-CoV-2 variants threatens the continued efficacy of these treatments. In order to address this, we interrogate the evolutionary history of the entire SARS-CoV-2 proteome to identify evolutionarily conserved functional sites that can inform the search for treatments with broader coverage across the coronavirus family. Combining this information with the mutations observed in the current COVID-19 outbreak, we systematically and comprehensively define evolutionarily stable sites that may provide useful drug and vaccine targets and which are less likely to be compromised by the emergence of new virus strains. Several experimentally-validated effective drugs interact with these proposed target sites. In addition, the same evolutionary information can prioritize cross reactive antigens that are useful in directing multi-epitope vaccine strategies to illicit broadly neutralizing immune responses to the betacoronavirus family. Although the results are focused on SARS-CoV-2, these approaches stem from evolutionary principles that are agnostic to the organism or infective agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA